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Ecological quality objectives (EcoQOs), as tools for implementing ecosystem approach, have long been
acknowledged to protect the marine ecosystems and fisheries in regional seas through joint efforts by
surrounding countries over the past decade. The present review analyzed the best available meta-data
relating to the five ecosystem elements that were recently proposed by the Northwest Pacific Action
Plan to evaluate the current status of coastal ecosystem health in marine environment of the Yellow Sea.
We suggested the six tentative EcoQOs among five ecological quality elements including: 1) biological
and habitat diversity; 2) invasive species; 3) eutrophication; 4) pollutants; and 5) marine litters. Envi-
ronmental status was assessed, depending on the EcoQOs targets, by comparison to the world average
values, existing environmental standards, or reported values of other regional seas. Results of analysis
revealed that among the six tentative EcoQOs, two target objectives to marine biodiversity and con-
centrations of nutrients (viz., DIN and DIP) were met towards good environmental status. Whilst, three
EcoQOs relating to hypoxia and red-tide, pollutants (persistent toxic substances and metals), and marine
litters (including microplastics) did not meet and one relating to invasive species could not be judged due
to insufficient data sets. The biggest weak point for developing suitable EcoQOs and assessing status of
ecosystem health could be insufficient meta-data sets available and/or discrepancy in methodological
details cross the data-sets or between the two targeted countries. Thus, the cooperation of neighboring
countries, viz., Korea and China for the Yellow Sea, is necessary for the ecosystem based management of
our regional sea in the future. Overall, this first time review for the assessment of target tentative EcoQOs
in the Yellow Sea region encompassing coasts of Korea and China would provide a better understanding
of the current status of environmental pollution and ecosystem health.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Coastal environments have long been deteriorating due to (in)
direct anthropogenic pollution, thus marine pollution has become a
significant and common problem worldwide. For the management
and sustainable use of coastal and marine ecosystem services,
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particularly for the regional seas neighboring multiple countries,
intergovernmental efforts are deemed important. For example,
ecological quality objectives (EcoQOs) have been developed to
protect the marine ecosystems and fisheries in the regional seas
over the past decade through the many international programs or
societies (Rogers and Greenaway, 2005). The EcoQOs are tools in
implementing ecosystem approach which represent the desired
qualities of specific ecosystem elements, being proposed as several
operational objectives of elements and/or indicators previously
worldwide (OSPAR Commission, 2010a).

The EcoQOs system consists of elements (viz., indicators;
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specific issues of the ecosystem) and objectives (viz., targets;
against which to measure progress). Meeting the EcoQO refers to a
good state for the corresponding ecosystem element, while not
meeting the EcoQO would indicate an immediate action plan being
required (OSPAR Commission, 2010b). The EcoQOs were set up
appropriately for evaluation of ecological status and protection of
regional marine environment. Each EcoQO has its own target
criteria and is a system that evaluates if it has achieved the corre-
sponding criteria through a desired ecosystem monitoring pro-
gram. OSPAR has been developing the EcoQOs system for
protecting and conserving the region of North Sea and its resources,
with 15 neighboring countries participated since 1992. The EcoQOs
of the North Sea cover varying elements of ecosystem including
phytoplankton, benthic species, fish, seabirds, and marine mam-
mals (OSPAR Commission, 2010a). In addition, the aspect of
anthropogenic activities and their effects is considered as one
component of EcoQOs, such as chemical pollution, eutrophication,
shipping (oil at sea), litter, and fishing. Integrated assessment of
North Sea ecosystem adopting the EcoQOs has been well practiced
being a successful example case of the management of regional sea.

The Northwest Pacific Action Plan (NOWPAP) region includes
Yellow Sea, where two rapidly developing Asian countries of Korea
and China have long experienced ecosystem threats linked to
environmental deterioration during the past half century. These
pollution-mediated marine ecosystem problems include: 1) a loss
of habitat and biological diversity; 2) introduction of invasive
species; 3) coastal eutrophication; 4) chemical pollution; and 5)
marine litter (NOWPAP POMRAC, 2017). In fact, the individual sci-
entific efforts to assess ecological conditions of polluted coastal
environments of the NOWPAP region have significantly increased
during the past several decades (Jeppesen et al., 2011; Ryu et al.,
2016). However, the systematic monitoring of pollution and con-
trol have not been well practiced at intergovernmental level (Daler,
2005; Van Lavieren et al., 2011; Davis et al., 2015). Accordingly, it
was quite difficult to select proper and comparable ecosystem el-
ements to adopt and develop the consensus EcoQOs in the North-
west Pacific region.

Marine mammals, waterbirds, benthic and pelagic communities
are all important components of marine ecosystem and the popu-
lation and/or species diversity would support the overall ecological
health quantitatively or functionally (NSCs, 2010; OSPAR, 2017).
However, populations of some important coastal marine species
have declined recently worldwide due to mainly human activities
such as by over-exploitation or pollution into waterways (Trites
et al., 1999; Schipper et al., 2008). Meanwhile, invasive species
are becoming rapidly introduced in new areas and are proliferating
in ways that are harming original ecosystems. It is well known that
invasive species, mostly introduced through ballast water, are one
of the significant threats to marine coastal environments (Mito and
Uesugi, 2004).

In addition, eutrophication often adversely affects coastal eco-
systems, leading to harmful algal blooms (HAB) and/or anaerobic
waterborne conditions, namely hypoxia. Persistent toxic sub-
stances (PTSs) and metals and metalloids are major contaminants
in aquatic ecosystems because they are toxic to marine life,
persistent for long periods of time, are often not easily biodegrad-
able, and could accumulate in marine organisms (Lotufo and
Fleeger, 1997; Jones and De Voogt, 1999; Todd et al., 2010). In
general, PTSs and metals released into the aquatic environment
primarily originate in industrial areas, domestic areas, and also
eventually from chemical accidents such as oil spills. Some PTSs
have been repeatedly documented as widespread contaminants in
coastal environments of the Yellow Sea, but their long-term
ecological impacts remain in question (Zhang et al., 2009; Hong
et al., 2012a, 2012b).

Marine litter commonly observed everywhere; at the sea sur-
face, on coastal beaches, and on the seafloor, is of increasing
concern in the NOWPAP region (NOWPAP, 2008, 2011). They can
travel for extended distance and time before becoming stranded,
thus the ecological impacts could not be limited in specific region
and/or temporal period. It impairs scenery along the shoreline and
is detrimental to marine biota, fisheries, safe vessel operation,
navigational safety, and ecosystems, in general (Bergmann et al.,
2015). Moreover, marine litter can be physically degraded into
meso-particles (5—2.5cm) and microparticles (<5mm) that
potentially impact aquatic ecosystems and ultimately, human
health. Therefore, marine litter and micro-particles are a serious,
global environmental problem.

The Yellow Sea Large Marine Ecosystem (YSLME) should be
protected by joint efforts of Korea and China. It is desirable to
establish common EcoQOs, similar to the case of the North Sea and
to be evaluated and managed through systematic monitoring ef-
forts. Considering the availability of monitoring data of ecosystem
elements that were recently proposed by the NOWPAP experts
group (NOWPAP POMRAC, 2017), we suggested six tentative Eco-
QOs to assess the ecosystem health and to protect the marine en-
vironments of the Yellow Sea (Table 1). The objectives of the
present review are to provide a preliminary evaluation of the
suitability of the tentative EcoQOs encompassing the key elements
of biodiversity and pollution, particularly targeting the coastal
areas of South Korea and China. We intensively examined and
analyzed the available meta-data for the two selected countries
within the NOWPAP region, focusing on the aspect of long-term
perspectives under the six target EcoQOs (Table 1). Depending on
the subject, we set a couple of operational criteria and indicators to
systematically describe the current status of proposed EcoQOs and
discussed long-term trends. The thoroughness of our review is
limited to some extent, due to limited published data and literature
across the target countries in time and space.

2. Data collection and analyses
2.1. Study area: the Yellow Sea

Geographically, the study area belongs to the NOWPAP region,
where four neighboring countries of Korea, China, Japan, and Russia
are cooperating to protect marine environments through the
NOWPAP program, as a part of the Regional Seas Programme of the
UNEP (United Nations Environment Programme) since 1994.

The Yellow Sea region, which is known to be one of the most
productive area in ecological and socio-economic aspects world-
wide, say with world top levels in marine biodiversity and fisheries
products. The YSLME spans about 440,000 km? and averages 44 m
in depth, providing well developed tidal flats (~18,000 km?) that
are situated along the coasts of Korea and China (Koh and de Jonge,
2014), which is far extended compared to the world best known
tidal flats in the Wadden Sea area (~4700 km?) (Fig. 1). The Ocean
Health Index that evaluated the status of overall ecosystem health
for the world's ocean indicated that South Korea ranked 41st and
China ranked 160 th (Halpern et al., 2012; Ocean Health Index,
2018) (Fig. 1). Of note, the total score of Korea was 74 points that
is higher than the global score (viz., world average of 221 countries
EEZs in 2017; 70 points) and the total score of China was 62 points
that is lower than the global score. Korea has obtained high scores
(>95) in ‘artisanal fishing opportunities’, ‘natural products’,
‘biodiversity’, and ‘coastal livelihood and economics’, while China
has only obtained high score in ‘coastal livelihood and economics’.
The Ocean Health Index project predicted that the overall score of
Korea will likely increase at + 4%, but that of China will likely
decrease at —7% in the future.



Table 1

Five ecological quality elements and six tentative objectives for protection of marine environments in Korea and China. The degree of monitoring efforts and metadata availability were given by country for a comparative purpose.

Ecological Quality Elements
/Operational criteria or targets

Korea

China

Tentative Ecological Quality Objectives (EcoQOs)

Monitoring efforts Data Monitoring efforts Data
availability” availability

nation-wide project-based 0 1 2 3 nation-wide project-based 0 1
1. Biological and habitat diversity
Species diversity of marine mammals and waterbirds v v v v v
Species, age, and size structure of fish stocks v v v 7/ v v
Distribution of benthic and pelagic communities v v v v/ v 1. Number of species and density of marine organisms should

and their status (invertebrate, plants & algae, and fish) be maintained above the mean values of world ocean.
2. Invasive species
Abundance and state characterization of invasive species v v v v 2. Invasive species should not be newly introduced.
Environmental impact of invasive species v v v v
3. Eutrophication
Nutrients concentration v v v 7/ v 3. Eutrophication should not occur.
Direct effects of nutrient enrichment v v v 7/ v 4. Coastal hypoxia and red tide should not be found at all sites.
Indirect effects of nutrient enrichment v v v v v v
4. Pollutants
Concentration of pollutants v v v v v 5. Concentrations of organic pollutants and metals in sediments
should not be exceeded the sediment quality guidelines.
Effects of pollutants v v v
5. Marine litter
Characteristics of litter in the marine and coastal v v v 7 v 6. Density of marine litter and microplastics in coastal
environment waters should be maintained below the values of other regional seas.

Impacts of litter on marine life v v v v

"Metadata availability given as degree of 0—3 based on literature survey; ‘0’ indicates no data available, ‘1’ for seldom and limited data available, ‘2’ for moderately accumulated data available, and ‘3’ for fairly well documented

data available.
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Fig. 1. Map showing the study area containing only in the Northwest Pacific Action Plan (NOWPAP) region and Ocean Health Index (OHI) of Korea and China. The dotted lines

indicate the boundary of each coastal area.

2.2. Data collection

The NOWPAP initiated the development of EcoQOs in 2014 and
agreed to prepare regional overview on possible EcoQOs in the
2016 meeting. The five proposed elements of the EcoQOs include 1)
biological/habitat diversity, 2) invasive species, 3) eutrophication,
4) pollutants, and 5) marine litter (NOWPAP POMRAC, 2017). These
elements primarily concern the anthropogenic pressure which
cause adverse impacts on coastal and marine ecosystems. We
collected all the available data in the coastal and open ocean of the
marine environments of Korea and China from the peer-reviewed
publications (total of 110 documents) since 1970s and analyzed
the meta-data following the operational criteria or indicators sug-
gested by the NOWPAP. The detailed description of data collection
and literature lists for the 6 EcoQOs proposed in this review were
given in the Supplementary Materials. Of note, the meta-data from
North Korea could not be collected due to limited access and
availability. It should be also mentioned that the data for some
objectives were not available in time series, thus most compre-
hensive or recently reviewed data were utilized to describe the
current status of pollution.

2.3. Operational criteria or targets

Considering the current monitoring system in the marine en-
vironments from Korean and Chinese governments, 2—3 opera-
tional criteria or targets were selected under the five elements of
EcoQOs suggested by the NOWPAP (NOWPAP POMRAC, 2017)
(Table 1). First, the ecological quality element, ‘biological and
habitat diversity’ included four major groups of taxa, namely

marine mammals, waterbirds, fishes, and marine invertebrates.
Operational criteria were considered as species diversity of marine
mammals and waterbirds, species, age, and size structure of fish
stocks, and distribution of benthic and pelagic communities and
their status (invertebrate, plants and algae, and fish). Second, the
element, ‘invasive species’ designated by the governments of South
Korea and China were compiled and described in a comparative
manner; operational criteria were abundance and state character-
ization of invasive species and their environmental impacts. Third,
the element, ‘eutrophication’ indicating the status of water quality
were evaluated; nutrients concentration (e.g., dissolved inorganic
nitrogen (DIN) and dissolved inorganic phosphate (DIP)), direct
effects of nutrient enrichment (coastal hypoxia and red-tide), and
indirect effects of nutrient enrichment. Fourth, the element, ‘pol-
lutants’ indicates the potential adverse effects on marine organ-
isms when the concentrations exceeded the existing
environmental guidelines. The data of environmental contami-
nants including PTSs and metals have been fairly well documented
in time and space, accordingly in-depth analysis was performed for
various chemicals of concern. The PTSs of concern include poly-
chlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans
(PCDD/Fs), polychlorinated biphenyls (PCBs), dichloro-diphenyl-
trichloroethane (DDTs), hexachlorohexanes (HCHs), polycyclic ar-
omatic hydrocarbons (PAHs), nonylphenols (NPs), polybrominated
diphenyl ethers (PBDEs), and hexabromocyclododecanes (HBCDs).
Other target metals and metalloids include As, Cd, Cr, Cu, Hg, Ni, Pb,
and Zn. Finally, the element, ‘marine litter’ has been recently
recognized as one serious emerging issue; operational criteria were
characteristics of litter in the marine and coastal environments and
their impacts on marine life. We collected meta-data for marine
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Fig. 2. Overview of marine biodiversity in Korea and China; (a) a number of marine eukaryotic species and (b) species per area values, and (c) a number of species in taxa of

Animalia in coastal areas of Korea and China.

litter including microplastics in the beach and surface waters of the
Yellow Sea and discussed the spatial characteristics and potential
impacts on marine wildlife. Considering the availability of meta-
data, six tentative EcoQOs were proposed (Table 1). Environ-
mental status of the Yellow Sea region was assessed by comparison
to the world average values (biological and habitat diversities),
existing environmental standards (eutrophication and pollutants),
or reported values of other regional seas (marine litters and
microplastics), respectively, in a quantitative manner.

3. Marine biodiversity

We suggest that EcoQO 1 is “Number of species and density of
marine organisms should be maintained above the mean values of
world ocean.” A number of eukaryote species and density in coastal
areas of South Korea and China were evaluated for biodiversity
(Fig. 2). In Korea, total 9900 eukaryote species were recorded and
composed high number of species in the order of Animalia, plants &
algae, and Protozoa. Total species numbers of Eukaryota were
similar or slightly lower than the average value of world ocean
(10,759 species), while the species richness (species per area, spp.
103 km~2) was about four times greater than the world average
value (7.68 species 10 km~2). The value of species per area in
coastal areas of Korea was found to be highest (32.3 species
103 km~2) compared to those of the world ocean (Costello et al.,
2010). Despite its relatively small area, Korea, surrounded by sea
on three sides, has various types of habitats including estuary,
intertidal zone (mud flat, beach, rocky shore, and salt marsh), and
island, which provides environments suitable for a variety of ma-
rine organisms (Park et al., 2014; Song et al., 2017).

In China, total 22,365 eukaryote species were reported and
Animalia was found to be a main taxonomic group, followed by

plants & algae, and Protozoa. The species number of Animalia and
Protozoa were about 2—5 times greater than those of the world
ocean due to the large area of Chinese coasts. The number of species
per area of China was relatively smaller (26.9 species 10° km~2)
than that of Korea, but the value was about 3.5 times greater than
the world average (Costello et al., 2010). These results indicated
that China has not only large coastal area, but also suitable for
inhabiting marine organisms with varying climate conditions in
tropic, subtropic, and temperate regions. Among the Animalia,
Invertebrata showed the great species diversity in both countries.
In Invertebrata, Mollusca and Crustacea were the the most domi-
nated taxa, followed by Annelida, Cnidaria, and others. Overall, the
data has shown that Korean and Chinese coastal areas have greater
number of species and species per area than those of other regional
seas in the ocean.

Although number of species showed good state in Korea and
China, however, the negative evidences for other elements of ma-
rine biodiversity and ecosystem health were also reported by some
previous studies. For example, the number of minke whales was
reduced from 1685 in 2001 to 733 in 2008 (McKinnell and Dagg,
2010). The populations of marine mammals in the Yellow Sea
have been decreasing primarily due to heavy catch loads as well as
habitat destruction owing to the coastal development. In case of
fish stocks, Yellow Sea was known as one of the most exploited area
in the world (Tang et al., 2003). Human activities such as overf-
ishing, dam construction, and pollution in addition to climate
change have been causing the long-term changes in fish population
or species abundance. From 1980 to 2000, the number of catches of
coastal fishes and demersal fishes decreased, while those of pelagic
fishes increased in the Korean waters. In addition to the decrease in
abundance, the size of demersal fish was continuously reduced
(Zhang and Kim, 1999).
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Fig. 3. Overview of invasive species in Korea and China; (a) a number of invasive species, (b) comparison of species composition, and (c) potential adverse impact(s) on ecosystems

and corresponding species.

Overall, the results of present review suggested that the status
of marine biodiversity in both Korea and China meets the tentative
EcoQO 1. However, due to lack of data, comparative analysis for
status of biological and habitat diversity concerning marine mam-
mals, waterbirds, and fish stocks could not be conducted in the
present review (Table 1). Several recent studies have reported that
those elements were in a poor state apart from the species diversity
around the world (Myers et al., 1997; Schipper et al., 2008). In order
to protect and manage marine organisms and habitats, it is
important to develop the appropriate EcoQO relating to the biodi-
versity through systematic monitoring efforts and collaborative
studies by each country.

4. Invasive species

We suggest that EcoQO 2 is “Invasive species should not be newly
introduced.” Invasive species are known to cause diversity and ge-
netic contamination, biofouling, red-tide (producing marine bio-
toxins), devastation of aquaculture, and destruction of habitats. Due
to lack of available information and late monitoring (i.e., late
recognition about harmful effects by invasive species), detailed
information such as introducing time, pathways, and specific im-
pacts on ecosystems in each country could not be timely provided
(Xu et al., 2006; Chavanich et al., 2010; NOWPAP DINRAC, 2010,
2013; Xu et al., 2012; KOEM, 2015; Zhan et al,, 2017). Thus, the
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evaluation for invasive species was limited to assess a total number
of invasive species recognized in coastal areas of South Korea and
China and their potential impacts on ecosystem in this review
(Fig. 3). In Korea, total 63 invasive species were recorded with
zoobenthos (28 species), plankton (20 species), phytobenthos (7
species), fish (6 species), and halophtyte (2 species). In China
(NOWPAP region), total 69 species were reported with zoobenthos
(30 species), plankton (16 species), fish (15 species), phytobenthos
(5 species), and halophtyte (3 species). The compositions of inva-
sive species in both countries were generally similar but the pro-
portions of common species were rather small (17 species), viz.,
27% in Korea and 25% in China (Fig. 3).

Both Korea and China have been suffering from devastation of
coastal ecosystems and massive economic losses over the past
decades by invasive species. Diversity and genetic contamination is
the most well recognized negative impact by invasive species.
Chordata was main taxa in this category, followed by Mollusca,
Arthropoda, and others. Most of those invasive species were first
utilized as commercial aquaculture organisms, but eventually
caused adverse effects on native ecosystem (Savini et al., 2010).
Unlike diversity and genetic contamination, invasive species
causing other negative impacts on ecosystem could be introduced
unintentionally by ships’ ballast water, hull fouling of ships, and
other routes (Hulme, 2009). Barnacles, sea moss, and mussel were
well known invasive species causing biofouling both in the Korean
and Chinese coastal waters.

Meantime, red-tides occur by numerous invasive species, such
as dinoflagellates and diatoms, and produce marine toxins. For
example, Cochlodinium polykrikoides caused large scale HAB in the
southern coastal area of Korea and extremely serious damage to
aquaculture species were evidenced (Jeong et al., 2004). Pseudo-
nitzschia calliantha was known to produce a neurotoxin that causes
amnesiac shellfish poison (Besiktepe et al., 2008) and Desmarestia
ligulata was reported to have high sulfuric acid concentration in the
body (Sasaki et al., 1999). Meanwhile, Asterias amurensis was a
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representative species affecting aquaculture and native benthic
ecosystems in Korea and China. In addition, in China, economically
negative effects were reported such as diffusion of pathogens by
Litopenaeus vannamei (Briggs et al., 2004).

More recently, cordgrass (Spartina spp.) has been introduced
unintentionally in several mudflat areas in the west coast of South
Korea, and caused destruction and disturbance of the tidal flat
ecosystems since 2012 (Kim et al., 2015). They have been increas-
ingly and widely distributed along the west coast of Korea due to
their rapid growth and reproduction habits. A variety of benthic
animals and seabirds have lost their original habitats due to the
invasion of cordgrass and negative impacts on fisheries and tourism
became of significant concern in the local societies. In case of China,
cordgrass had been planted intentionally to increase the stability of
shoreline, mudflats, and beaches since the late 1970s (An et al.,
2007). However, due to the various negative impacts, local biodi-
versity has been greatly affected, accordingly cordgrass is now
recognized as one primary invasive species in China (Liu et al.,
2016). Thus, on destructive aspect of habitat, both Korea and
China have been severely damaged by cordgrass, although the
introduction route and spatiotemporal extension of the Spartina
spp. varied between the two countries.

In the present review, we could not judge whether the EcoQO 2
was met due to lack of available data on spatiotemporal distribution
of invasive species and their ecological impacts on coastal ecosys-
tems in Korea and China. In order to meet the EcoQO 2, monitoring
efforts on community structure and functioning processes of inva-
sive species are needed. The historical evaluations of such adverse
impacts on original ecosystems should be fulfilled in the future.

5. Eutrophication
5.1. Nutrient concentrations

We suggest that EcoQO 3 is “Eutrophication should not occur.”
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Concentrations of DIN and DIP data of surface water in coastal areas
of Korea and China over the past ~30 years were collected and used
for the evaluation of eutrophication (Fig. 4). The nutrient concen-
trations were compared to the Level 1 (0.2mgL~! for DIN and
0.015mgL~! for DIP) of water quality standard (WQS) of China
(maximum permissible concentration) (MEP, 1998). In Korea, Water
Quality Index (WQI) including DIN and DIP as well as saturation (%)
of DO in bottom water, chlorophyll a, and transparency are used for
assessment of seawater quality (MLTM, 2011).

In Korea, since the 1980s, the concentrations of DIN and DIP
showed an increasing tendency seemingly due to the rapid
industrialization and insufficient sewage treatment facilities until
the 1980s (Fig. 4). After the 1990s, the DIN and DIP concentra-
tions showed a decreasing tendency, with exceptions of the
elevated concentrations exceeding the WQS at some sites in the
late 1990s, overall concentrations remained low levels since the
2000s. In China, DIN and DIP concentrations have gradually
increased since the 1990s (Fig. 4). The concentrations were below
the WQS at all stations of the Chinese coastal areas. Since the
2010s, the overall concentrations of DIN and DIP have maintained
low levels. Overall, the nutrient concentrations in surface
seawater both in Korea and China were generally found to satisfy
the EcoQO 3.

Previous studies reported that the surface and bottom con-
centrations of DIN throughout the southern Yellow Sea were
greater from 2006 to 2007 than those in previous years (Wei
et al, 2015). Concentrations of PO4-P and SiO»-Si initially
decreased from the 1950s to the 1990s, and then increased in the
late 1990s (Wei et al., 2015). This trend somehow differed from
the continual increase of NO3-N during the same period. Mean-
time, N:P ratios from 1985 to 2006 increased annually, while the
Si:N ratios declined. From 2001 to 2009 (with exceptions in 2003
and 2006), the average concentration of DIN in surface waters
increased, while DIN concentrations in deep waters remained
constant (KKim and Kim, 2013). The average concentrations of DIP
in both surface and deep waters have remained constant during
the past decade, while the concentration of DIN has varied (Kim
and Kim, 2013). N:P ratios in surface layers of the eastern
NOWPAP region have changed tremendously, while the ratio in
the deep layer has remained relatively constant. Although N:P
ratios have held more constant in the eastern NOWPAP region
than in the Yellow Sea, previous studies predicted that the N:P
ratio in the eastern NOWPAP region would be altered by an in-
crease in atmospheric nitrogen deposition (Ohara et al., 2007;
Kim and Kim, 2013).

Human activities have rapidly accelerated eutrophication in
coastal waters and the concentration and composition of nutri-
ents has detrimentally impacted the physiological development
and reproduction of marine organisms. Increases in nutrient
concentrations and composition changes have threatened the
stability of marine ecosystem. Excess concentrations of nutrients
could cause the eutrophication, hypoxia, and HAB, thus it needs
to manage the sources (Hagy et al., 2004; Heisler et al., 2008).
Since most nutrients enter the coastal ecosystem through point
and non-point sources on lands, they can be solved by imple-
mentation of total pollution load management system (TPLMS)
and/or upgrade of sewage treatment facilities (Chang et al,
2012).

5.2. Hypoxia and harmful algal blooms

We suggest that EcoQO 4 is “Coastal hypoxia and red tide should
not be found at all sites.” Concentrations of DO in the Korean coastal
waters greatly varied depending on the locality and very low DO
concentrations close to hypoxia were sometimes observed (Fig. 4)

during the period of ~35 years. However, in terms of average, the
DO concentrations in surface water have shown the above level of
WQS of China (Level 1: 6 mg L’1) (MEP, 1998). The DO concentra-
tion has shown relatively constant temporal trend from the 1990s
until recently, without pronounced temporal variation. In the case
of China, overall, DO concentration was greater than the WQS, but
the concentrations were below the WQS in the mid-2000s, on
average. During this period, great number of red-tide occurrence
was recorded and relatively great DIN concentration was evi-
denced. Thus, deficient DO in surface water of the Chinese coastal
waters in the mid-2000s appeared to be associated with eutro-
phication and red-tide occurrences. Since then, it has been showing
a high DO concentration. According to the number of red-tides,
approximately 100 red-tides per year occurred between 1995 and
2000 in Korea. Since then, there has been a tendency to decrease
until 2010, but there has been drastic increase of >200 red-tides on
annual basis from 2010 to 2015. In the case of China, great number
of red-tides occurred from 2000 to 2002, then gradually decreased
with only about 10 red tides per year from the year 2009.

SeaWiFS data spanning 1997—2006 indicated an increase in
Chlorophyll a concentration in the Yellow Sea after 2002, but sea
surface temperature (SST) did not change, nor did the concentra-
tion of suspended sediments (nLw555) (McKinnell and Dagg,
2010). However, the cause for this increase is not clear. Occur-
rences of HAB are extensive and frequent in coastal waters of the
East China Sea. HAB frequency increased drastically after 2000,
reaching frequencies almost 90-fold higher than in prior years. In
the 1980s, Noctiluca scintillans (a dinoflagellate) was the main
species involved in the reported algal blooms (Tang et al., 2006).
Since the 2000s, Prorocentrum dentatum has become the dominant
species in HAB, increasing in concert with an increase in N:Si and/or
N:P ratios (Tang et al., 2006; Chai et al., 2009). The Chlorophyll a
concentration at the ocean surface over the period of 1996—2002
did not change in the eastern NOWPAP area (Yamada et al., 2004).
There were 304 red tide events along the Korean coast from 1999 to
2003, caused by 31 species of dinoflagellates (NFRDI, 2004).
Cochlodinium polykrikoides dominated the southeastern NOWPAP
region since 1996. The species has become more widespread
recently and has begun to damage commercial fisheries. This was
particularly true in 2003, when C. polykrikoides blooms reached
48,000 cells mL~!, with the longest persistent bloom lasting for 62
days (Kim, 2010). The number of red tide blooms increased from
2010 to 2015, and the maximum cell concentration remained high
(except for 2011) in the southeastern NOWPAP region (NIFS
(National institute of Fisheries Science), 2017).

Overall, hypoxia and red-tide were still found in both Korea and
China, indicating that they did not meet the tentative EcoQO 4.
Continuous monitoring and management measures are needed to
prevent damages caused by coastal eutrophication and red-tides in
timely manner.

6. Pollutants

We suggest that EcoQO 5 is “Concentrations of organic pollutants
and metals in sediments should not be exceeded the sediment quality
guidelines.” Concentrations of pollutants in water samples could
reflect short-term contamination and varied among season, thus,
we assessed the sediment contamination in this study. From the
1990s to present, available data on the PTSs and metals in sedi-
ments of the coastal areas of Korea and China were collected and
analyzed (Fig. 5 and Fig. S1). The contamination status of sedi-
mentary PTSs and metals in Korea and China were evaluated using
the Canadian Sediment Quality Guidelines for protection of aquatic
life, such as interim sediment quality guidelines (ISQGs), probable
effect level (PEL), and federal environmental quality guidelines
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Fig. 5. Temporal concentrations of (a) persistent toxic substances (PTSs); PCBs, DDTs, HCHs, and PAHs and (b) metals and metalloid; As, Cd, Cr, and Cu in sediments of coastal areas
of Korea and China from 1980 to 2015. Dotted lines indicate the sediment quality guidelines developed previously (ISQG: interim sediment quality guidelines; PEL: probable effect

level).

(FEQG) and NOAA guidelines such as effect range low (ERL) and
effect range median (ERM) (NOAA, 1999; CCME, 2001; ECCC, 2013,
2016).

During the past two decades, PCDD/Fs, HCHs, As, Cr, and Ni
showed the exceeding concentrations of PEL in Korea and PCBs,
DDTs, HCHs, As, and Cd exceeded guideline in China, on average. In
addition, DDTs, NPs, PAHs, Hg, Pb, Zn, and Cu concentrations in
Korean sediments exceeded the ISQGs, while PAHs, Cr, Hg, and Ni
concentrations in Chinese sediments exceeded. The results of pre-
sent review for PTSs revealed that the major pollutants in sedi-
ments differed each other between Korea and China. PBDEs and
HBCDs were found to be lesser contaminated in both two countries,
and none of them exceeded the FEQGs (Fig. S1). The most recently
reported data of sedimentary concentrations of PTSs and metals
and metalloid exceeding ISQGs were PCDD/Fs, HCHs, As, and Cr in
Korea, and HCHs, As, and Cd in China. Overall, the results suggest
that coastal sediments both in Korea and China are moderately
polluted by PTSs and metals.

Study efforts on PTSs in coastal ecosystems of South Korea have
been increasing given over the past two decades (Hong et al.,
2012a; Khim and Hong, 2014; Lee et al., 2014, 2017; Jeon et al,,
2017; Meng et al., 2017). Early PTSs research in Korea concen-
trated on a classic group of persistent organic pollutants, such as
PCDD/Fs, PCBs, and organochlorine pesticides. Later research
included new target chemicals, including PBDEs, HBCDs, and sty-
rene oligomers (SOs). Twelve types of PTSs were detected at hot-
spot areas, such as Lake Sihwa, Gwangyang Bay, Masan Bay, Busan
Harbor, and Ulsan Bay, with relatively greater concentrations than

those reported in other coastal regions of Korea (Hong et al., 2016a).
Most PTSs were detected at similar intensities in all research areas,
except for some emerging PTSs, which include alkyl-PAHs (derived
mainly from petroleum), HBCDs, and SOs (Ramu et al., 2010; Hong
et al., 2016b; Yoon et al.,, 2017). In general, PTSs are well adsorbed
on suspended particles due to their hydrophobic properties which
are then settled down into the bottom and finally accumulated in
coastal sediments (Wania and Mackay, 1996; Fu et al., 2003). In
addition, PTSs and metals can be accumulated in marine organisms,
such as suspension feeders and deposit feeders, and biomagnified
through the food chain. Thus, sedimentary contaminants are of
primarily concern in assessment of benthic ecological quality.

China has been subject to rapid development during the past 20
years and consequently, severe contaminations of PTSs and metals
have been increasingly reported in the Bohai Sea, Yellow Sea, and
East China Sea (Da et al., 2013). Hotspot areas were identified along
the Bohai Sea and the Yellow Sea. Some regions were highly
polluted by PBDEs, HBCDs, and perfluoroalkyl acids (PFAAs), and
great concentrations of DDTs, butyltins, and HBCDs in shellfish
were detected in the Yellow Sea and the East China Sea (Yang et al.,
2008; Li et al., 2014; Yin et al., 2015). Temporal trends of PTSs and
metals concentrations have mostly shown to decrease (Yang et al.,
2012; Zhu et al., 2012), but monitoring data in multimedia samples
are still limited.

Overall, sedimentary contaminations by PTSs and metals seem
to be common environmental problems between Korea and China,
with many classes of chemicals exceeding the guidelines. Of note,
the major environmental pollutants of interest between two
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countries would be different. Thus, contamination status of pol-
lutants did not meet the tentative EcoQO 5. Continuous efforts for
reducing contaminations of PTSs and metals in coastal waters are
needed to protect ecosystem and human health. In addition, site-
specific environmental quality guidelines of PTSs and metals to
protect the corresponding regional sea, for example in China and
Korea for the Yellow Sea region are needed, that will be essential to
develop and assess the more suitable and reliable EcoQO for pol-
lutants in the future.

7. Marine litter

We suggest that EcoQO 6 is “Density of marine litter and micro-
plastics in coastal waters should be maintained below the values of
other regional seas.” The occurrences (viz., density) of litter in beach
regions of Korea and China were comparable, while those in surface
water were significantly different (Fig. 6). The most numerous type
of litter in beach both in Korea and China was found to be plastic
items, followed by glass and paper. The contamination status of
marine litter on beach regions of Korea and China were generally
less than those of other areas such as Papua New Guinea
(120—7830 items 100 m~2) and Gulf of Aqaba (200 items 100 m~2)
reported previously (Al-Najjar and Al-Shiyab, 2011; Smith, 2012).
Meanwhile, density of marine litter in surface water in China was
found to be about 30 times greater than that in Korea, on average.
The greatest number of pieces of marine litter was polystyrene in
Korea, while plastic was the most dominant litter in surface water
in China. The density of marine litter in surface water both in Korea
and China was greater than those reported in North Sea (38 items
km~2) and Southern Ocean (6 items km~2) (Thiel et al., 2013; Ryan
et al., 2014), particularly the values in China were greater than that
of North Pacific region (459 items km~2) (Titmus and Hyrenbach,
2011).

In the study investigated in beaches of Korea from March 2008
to November 2009 (Hong et al., 2014), the most abundant type of
marine litter was found to be plastic; 49.8% in number (58.1% when
included the foreign plastic bottles, lids, food wrappers buoys, and
lighters). The second highest number of pieces of marine litter was
found to be styrofoam. Wood was third most numerous, but
constituted the greatest weight among the litter categories,

followed by plastic and styrofoam. Total volume of litter, in
decreasing order, was of styrofoam, plastic, and wood. The most
common item was styrofoam (12.8%), followed by fishing rope,
beverage bottles (glass), plastic bags, plastic food wrappers, plastic
caps, and others. The highest source of litter was identified to be
from ocean/waterway activities (49.2%), due to the high composi-
tion of fishing rope, buoys, and strapping bands. Shoreline/recrea-
tional sources accounted for 45.1% of marine litter. Overall, the
major source of marine litter was related to fishing activities,
which, if reduced, could greatly reduce the volume of marine litter
along the Korean shoreline.

In China, litter on beaches, seafloor, and water column were
surveyed during 2007—2014 (Zhou et al., 2016). Based on abun-
dance and density, much more litter was collected from beaches
than from the seafloor or water column because tidal currents and
wind waves transport floating debris to shores. The high amount
litter collected in the North China Sea may be due to the large
number of people who use beaches there. Plastic dominated most
of the litter, followed by styrofoam, wood, rubber, glass, fabric/fiber,
and metal. The source of marine litter on beaches and the seafloor
primarily originated from coastal/recreational activities. Navigation
and fishing constituted a secondary source of litter, while the
source of the litter on seafloor could not be clearly identified. In
urban estuaries, an abundance of microplastics was reported.
However, an apparent correlation between microplastics and the
surrounding activities (population density, development intensity,
and typhoon activity) could not be explained.

Marine microplastics have been of great concern in recent years,
due to their ubiquitous and persistent nature in the aquatic envi-
ronment. Plastic in the marine environment that degrade into
smaller pieces, such as microplastics, might pose problems to ma-
rine organisms because the particles can be ingested and accu-
mulated in digestive tracts (Wright et al, 2013). Density of
microplastics in beach and surface water between Korea and China
showed a different trend, with greater density in beaches of China
and greater density in surface waters in Korea (Fig. 6). Contami-
nation status of microplastics in beach and surface water in Korea
and China was generally greater than those of other regional seas
such as Santos Bay (Brazil) (Turra et al., 2014), Bering Sea (Doyle
et al., 2011), and North Atlantic regions (Thompson et al., 2004).
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In the study conducted in South Korea, plastic marine debris
were collected at 12 sites in 2013—2014 (Lee et al,, 2015). The
particles were classified into three types: large microplastics
(1-5 mm), mesoplastics (5—25 mm), and macroplastics (>25 mm).
The mean abundances of each size category of plastic were 880.4
(large micro), 37.7 (meso), and 1.0 (macro) particles m~2. The mean
weight of each type was 0.58 (large micro), 0.65 (meso), and 18
(macro) g m~2. Styrofoam overwhelmingly dominated the large
microplastic (99.1%) and mesoplastic (90.9%) categories. A similar
composition was reported in a previous study (Lee et al., 2013).
Fiber was the most abundant macroplastic (54.7%). Based on
weight, styrofoam dominated the large microplastic (74.6%) and
mesoplastic (41.2%) categories, while fiber dominated the macro-
plastic (38.0%) category. A high correlation was observed between
large microplastics and macroplastics.

In China, samples of microplastics in surface water were
collected from 7 sites in the Yangtze River Estuary and 15 sites in
the East China Sea (Zhao et al., 2014; Zhang et al., 2017). The
microplastics were categorized into four size groups, >5mm,
>2.5-5mm, >1-2.5mm, and >0.5—1 mm. The compositions of
each size were 0.2%, 4.4%, 28.4, and 67.0% in the Yangtze River Es-
tuary, and 8.8%, 25.9%, 29.9%, and 35.4% in the East China Sea,
respectively (Zhao et al., 2014; Zhang et al., 2017). The composition
of microplastics indicated that polyethylene is the most dominant
(51%), followed by polypropylene (29%), polystyrene (16%), poly-
ethylene terephthalate (3%), and polymer plastics (<1%) including
polyvinyl chloride, polyurethane, and acrylonitrile (Zhang et al.,
2017).

Overall, marine litter and microplastics in beach and surface
water showed distinct distribution and characteristics between
Korea and China. Although the limited data sets are available, both
Korea and China did not meet the tentative EcoQO 6. Thus, in order
to protect the regional sea including the Yellow Sea in the future,
joint efforts will be needed to reduce the pollution of marine litters
and microplastics in coastal waters of Korea and China.

8. Future directions towards coastal management and policy

Rapid coastal development, coupled with dynamic environ-
mental changes (due to human activities and climate change),
might be expected to drive the wide-scale ecological deterioration
observed in the NOWPAP region, including the Yellow Sea
ecosystem. In the present review, we proposed six tentative EcoQOs
out of five ecological quality elements to protect and manage the
coastal ecosystems of Korea and China, particularly the Yellow Sea
region based on the available data, and diagnosed the current
status of marine ecosystem health. Results of review suggested that
among the six EcoQOs, two EcoQOs such as marine biodiversity
(EcoQO 1) and nutrient concentrations (EcoQO 3) were met, three
EcoQOs such as hypoxia and red-tide (EcoQO 4), pollutants (EcoQO
5), and marine litters (EcoQO 6) did not meet, and one EcoQO such
as invasive species (EcoQO 2) could not be judged. Overall, the most
difficult point for developing suitable EcoQOs and assessment of
ecosystem health status was insufficient meta-data sets available
and/or differences in chemical analyses and biological identifica-
tion methods between the countries.

As mentioned several times above, the cooperation of neigh-
boring countries (Korea and China) is necessary for the manage-
ment of regional sea such as the Yellow Sea. First, it is necessary to
make an accurate diagnosis of current status of ecosystem and to
draw out the threatening factors. Second, the suitable EcoQOs
should be developed by an agreement between two countries,
which are appropriate for management and protection of regional
sea. Third, it is important to conduct systematic and continuous
monitoring for evaluation of EcoQOs. Fourth, it is necessary to

evaluate whether the EcoQOs are met, and if not, to establish and
implement environmental policies accordingly. Meantime, the
follow-up studies for the evaluation of appropriateness for the
tentative EcoQOs suggested in this review and/or the development/
modification of proposed EcoQOs (i.e., in response to the under-
estimated or possibly new threats) would be highly acknowledged.
Finally, we suggest that further researches on the topics under
insufficient understanding evidenced in this review, i.e., i) species
diversity of marine mammals and waterbirds; ii) environmental
impact of invasive species; iii) indirect effects of nutrient enrich-
ment; and iv) impact of litter (microplastics) on marine life, are
urgently needed. Apart from all the suggestions, it would be most
important to produce and share the consistent and systematic
database between the two countries or elsewhere. Despite the
limited data (due to lack of comparable metadata), this study
reviewed the current status of coastal ecosystems in Korea and
China and will provide useful information for the development of
appropriate EcoQOs for protection and management of the YSLME.
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Data collections of ecological quality elements.

The data of marine biodiversity in Korea and China used in the present review were from
Costello et al. (2010).

The invasive species data of Korea and China were based on the reports performed in
NOWPAP regions (Chavanich et al., 2010; NOWPAP DINRAC, 2010; NOWPAP DINRAC, 2013;
KOEM, 2015).

Concentrations of nutrients such as DIN and DIP, DO concentrations, and occurrences of
red-tides in coastal environments of Korea and China were used based on national wide monitoring
data in Korea and a total of 26 researches performed in NOWPAP regions (Zhu et al., 1997; Cha
et al., 1998; Choo and Kim, 1998; Park and park, 2000; Taylor and Trainer, 2002; Gong et al.,
2003; Li, 2003; Wang et al., 2003; Zhengyan et al., 2003; Zhao et al., 2004; Chai et al., 2006; Tang
et al., 2006; Chen et al., 2007; Zhou et al.,2008; CASIO, 2011; NOWPAP CEARAC, 2011a;
NOWPAP CEARAC, 2011b; Wang et al., 2011; Zhai et al., 2012; Li et al., 2014; Li et al., 2015;
Wei et al., 2015; Yoon et al., 2015; Kodama et al., 2016; KOEM, 2017; Qiao et al., 2017; NIFS,
2017).

As for pollutants, concentrations of PTSs in sediments of Korea and China were reviewed
using a total of 27 research articles and 2 review papers (Liu et al., 2000; Ma et al., 2001; Liu et
al., 2001; Xu et al., 2001; Chen et al., 2002; Wu et al., 2003; Hu et al., 2005; Hu et al., 2006; Fu et
al., 2007; Guo et al., 2007; Liu et al., 2007; Liu et al., 2008; Yuan et al., 2008; Zhang et al., 2009;
Hu et al., 2010; Wang et al., 2010; Yuan et al., 2011; Zhao et al., 2011; Li et al., 2012; Lu et al.,
2012; An et al., 2013; Li et al., 2013; Zhang et al., 2013; Duan et al., 2014; Zhang et al., 2014;
Hong et al., 2016a; Hong et al., 2016b; Wang et al., 2016; Meng et al., 2017).

The metal and metalloids concentrations of sediments were reviewed with a total of 36
researches (Lee and Cha, 1997; Ahn and Choi, 1998; Kong et al., 1998; Jin et al., 2000; Chen et
al., 2001; Kim et al., 2003; Hyun et al., 2007; Lee et al., 2008; Kim et al., 2009; Fang et al., 2009;
Zhan et al., 2010; Oh et al., 2011; Choi et al., 2012; Na and Park, 2012; Yuan et al., 2012; Lim et
al., 2013; Ra et al., 2013; Zhao et al., 2013; Chae et al., 2014; Fu et al., 2014; Hong et al., 2014;
Jiang et al., 2014; Miao et al., 2014; Song et al., 2014; Ra et al., 2014; Xu et al., 2014; Zhuang and
Gao, 2014; Kang et al., 2015; Rao et al., 2015; Xu et al., 2015; Song et al., 2015; Wang et al., 2015;
Zhang et al., 2015; Gao et al., 2016; Lin et al., 2016; Feng et al., 2016).
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Finally, marine litters and microplastics in beaches and seawater of Korea and China were
reviewed with a total of 14 papers (Kim et al., 2005; Jo et al., 2005; NOWPAP, 2008; NOWPAP,
2011; Lee et al., 2013; Zhao et al., 2014; Kim et al., 2015; Chae et al., 2015; Lee et al., 2015; Yu
et al., 2016; Zhou et al., 2016; Lee et al., 2017; Peng et al., 2017; Zhang et al., 2017).
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Fig. S1. Temporal concentrations of (a) persistent toxic substances; PCDD/Fs, NPs, PBDEs, and HBCDs and (b) metals; Hg, Ni, Pb,
and Zn in sediments of coastal areas of Korea and China from 1990 to 2015. Dotted lines indicate the sediment quality guidelines
developed previously (ERL: effect range low; ERM: effect range median; FEQG: federal environmental quality guidelines; ISQG:

interim sediment quality guidelines; PEL: probable effect level).
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