FISEVIER

Contents lists available at ScienceDirect

### **Environment International**

journal homepage: www.elsevier.com/locate/envint



# Large-scale monitoring and ecological risk assessment of persistent toxic substances in riverine, estuarine, and coastal sediments of the Yellow and Bohai seas



Seo Joon Yoon<sup>a</sup>, Seongjin Hong<sup>b</sup>, Seonju Kim<sup>a</sup>, Jongmin Lee<sup>a</sup>, Taewoo Kim<sup>a</sup>, Beomgi Kim<sup>a</sup>, Bong-Oh Kwon<sup>a</sup>, Yunqiao Zhou<sup>c</sup>, Bin Shi<sup>c</sup>, Peng Liu<sup>d</sup>, Wenyou Hu<sup>d</sup>, Biao Huang<sup>d</sup>, Tieyu Wang<sup>c,\*</sup>, Jong Seong Khim<sup>a,\*</sup>

- a School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
- <sup>b</sup> Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
- c State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- d Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China

#### ARTICLE INFO

Handling Editor: Adrian Covaci

Keywords:
Coastal pollution
PAHs
Alkylphenols
Styrene oligomers
Ecological risk assessment

#### ABSTRACT

The Yellow and Bohai seas comprise one of the most rapidly developing regions in the world, but efforts to assess coastal pollution by persistent toxic substances (PTSs) on wide spatial scale are lacking. The present study aimed to (1) measure the concentrations of PTSs, such as polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), and styrene oligomers (SOs) via large-scale sediment monitoring (total of 125 locations), (2) assess potential ecological risk of PTSs in sediments to coastal ecosystems, (3) estimate various sources and fresh inputs of PTSs, (4) determine distribution patterns of PTSs by human activities and land-use type, and (5) address decadal (2008–2018) changes in distributions of PTSs. The high concentrations of PAHs [ > 7000 ng g<sup>-1</sup> dry weight (dw)] in sediments were detected in Nantong in the Yellow Sea of China (YSC) and Huludao and Qinhuangdao in the Bohai Sea (BS), whereas lesser concentrations (< 200 ng g<sup>-1</sup> dw) were detected in the Yellow Sea of Korea (YSK). We found relatively high concentrations of sedimentary APs and SOs in Nantong, Huludao, and Qinhuangdao from the YSC and BS regions, but corresponding concentrations were generally below < 100 ng g<sup>-1</sup> dw in other locations. Concentrations of PAHs at 38 locations (30% of YSC and BS) posed a potential risk to aquatic ecosystems, whereas relatively low risk concentrations occurred in all locations of YSK. The main source of PAHs (concentrated in YSC and BS) were by-products of diesel and gasoline combustion (42% of total concentration), whereas biomass combustion (24%) dominated in YSK. Fresh inputs of PTSs indicated that the generation and use of PTSs continue across all regions and locations. Among PTSs, concentrations of PAHs were significantly associated with location (p < 0.05) relative to land-use within a given region, whereas concentrations of APs and SOs showed no significant relationships (p > 0.05) among or within regions. Over time, concentrations of PAHs have generally declined, but sediment contamination has increased at some locations in China, with sources shifting from a mixture of PAHs types to those linked to diesel and gasoline combustion. Additional studies are needed on the fate and potential ecological risk posed by certain PTSs in hotspots. This is one of the first efforts providing backgrounds on PTS pollution in the large marine ecosystem of the Yellow and Bohai seas.

#### 1. Introduction

Persistent toxic substances (PTSs) are ubiquitous contaminants in various environmental matrices, originating from numerous sources,

and are transported via a variety of mechanisms and pathways to the marine environment. The fate and impacts of typical PTSs are well known; they tend to accumulate in sediments after sinking with organic matter, where they exert adverse impacts to aquatic ecosystems (Hong

E-mail addresses: seojoonyoon@snu.ac.kr (S.J. Yoon), hongseongjin@cnu.ac.kr (S. Hong), sjhn2000@snu.ac.kr (S. Kim), jongmin8358@snu.ac.kr (J. Lee), taewoo0716@snu.ac.kr (T. Kim), bk1221@snu.ac.kr (B. Kim), bongkwon@snu.ac.kr (B.-O. Kwon), zhouyunqiao@163.com (Y. Zhou), binshi@rcees.ac.cn (B. Shi), pliu@issas.ac.cn (P. Liu), wyhu@issas.ac.cn (W. Hu), bhuang@issas.ac.cn (B. Huang), wangtieyu@163.com (T. Wang), jskocean@snu.ac.kr (J.S. Khim).

<sup>\*</sup> Corresponding authors.

et al., 2012a; Lee et al., 2018; Khim et al., 2018a). Polycyclic aromatic hydrocarbons (PAHs), alkylphenol (APs), and styrene oligomers (SOs) constitute classic and emerging PTSs. Originating from anthropogenic activities and natural sources, PTSs are widely distributed in benthic environments (Hong et al., 2016; Lee et al., 2017a,b; Yoon et al., 2017) where they pose potentially significant ecological threats to aquatic organisms.

PTSs are hydrophobic and hydrophilic organic pollutants with fused benzene rings. PAHs with 2-6 fused benzene rings are intentionally or unintentionally released from a variety of sources, including incompletely combusted fossil fuels and biomass, spilled crude or refined oil, and smelted metals (Lin and Zhu, 2004; Moon et al., 2006; Ghosh et al., 2015). PAHs spread through atmospheric deposition, wastewater streams, and industrial effluents but their fate vary depending on the multiple potential pathways they can follow. PAHs are a major contaminant and adversely affect aquatic ecosystems at concentrations above thresholds values (Engraff et al., 2011). APs are a widely used class of nonionic surfactants, with many industrial and household applications (White et al., 1994). Nonylphenol ethoxylates (NPEOs) and octylphenol ethoxylates (OPEOs) are the most common alkylphenol ethoxylates, both of which degrade via microbial and photochemical processes to nonylphenols (NPs) and octylphenol (OP), respectively (Li et al., 2013). APs are harmful endocrine disruptors and function to adversely stimulate feminization, reduce growth rates (Chen and Yen, 2013), inhibit reproduction, and cause neurological, and immunological problems (Giesy and Snyder, 1998). SOs, recently emerging as contaminants in sediments, have been reported from inland creeks (Hong et al., 2016), from estuary and coastal areas in a few regions (Yoon et al., 2019), and from sandy beaches worldwide (Kwon et al., 2015). SOs are generated from the degradation of polystyrene at high temperatures (240-300 °C) (Kwon et al., 2014) and have been reported to harm aquatic biota by causing genetic and reproductive toxicities (Ohyama et al., 2001; Tatarazako et al., 2002). Although SOs have been recently recognized as a new class of PTSs, widespread distribution in China is unknown.

The Yellow Sea (YS) and Bohai Sea (BS) are wide but semi-enclosed seas with a complex coastline that slowly exchanges waterbody encompassing many large rivers and estuaries (Chen, 2009). These two seas together are part of the Yellow Sea Large Marine Ecosystem (YSLME), which is one of 66 large marine ecosystem (LMEs) worldwide. Among these 66 LMEs, YSLME encompasses the most strong marine industrial activity being associated with the severe PTSs pollution in the very region [Table S1; Supplementary Materials (S)] (Hoagland and Jin, 2006)

The YS and BS are about 470,000 km<sup>2</sup> in size and is bordered by three countries: South Korea, North Korea, and China. South Korea and China are undergoing massive industrial and municipal development along the coasts of the YSLME and so those human activities are likely responsible for the increase in coastal pollution by PTSs. It has been reported that many anthropogenic pollutants have accumulated in the sediments of YS and BS (Khim et al., 2018b), but majority of the previous studies have either only reported pollution by some PTSs or in limited areas along the YSLME coasts (Meng et al., 2017). However, from these limited studies, most pollution indices for the YSLME exhibit high values and so we expect that the YSLME is severely contaminated.

Economic development intensifies land-use practices, which in turn negatively impact aquatic ecosystems. Coastal aquatic ecosystems are altered and contaminated by coastal development and discharges of land-driven pollutants from surrounding activities are a global problem (Saxena et al., 2015). The major factors responsible for sediment pollution in estuaries and coastal areas worldwide are due to changes in land-use associated with anthropogenic activities and lack of procedures to contain runoff (Karstens et al., 2016; Liu et al., 2017). In fact, some chemical contaminants, such as metals and PTSs identified in coastal sediments can be directly linked to land-use type (Kimbrough and Dickhut, 2006). Therefore, characterization of coastal land-use is

fundamental for addressing sources of coastal pollution of PTSs.

In the present study, we surveyed 125 locations, representing most coasts of the Yellow and Bohai seas to (1) measure concentrations of PTSs in sediment, specifically targeting selected chemicals of PAHs, APs, and SOs, (2) assess potential ecological risks posed by the PTSs, (3) identify sources of targeted contaminants, especially via freshwater inputs, (4) characterize spatial distribution patterns linked to land-use types, and (5) evaluate long-term changes (past 10 y) in sedimentary contamination of selected PTSs. Results of the present study would provide baseline information on PTSs contamination, such as point sources and hotspots, in a large marine ecosystem of the Yellow and Bohai seas and provide scientific data for informed decision-making and environmental management of the given coastal ecosystem.

#### 2. Materials and methods

#### 2.1. Study area and sampling

The present study focused on most coasts of the YSLME, encompassing both South Korea and China, because both countries have high socioeconomic dependency on the coast. Several metroplexes have grown along the coastline in South Korea (Seoul, Incheon, Asan, Gunsan, and Mokpo) and China (Beijing, Tianjin, Dalian, Huludao, Qinhuangdao, Weifang, Yantai, Qingdao, and Nantong). About 300 million people currently live near the coastline of the YS and BS, and population growth and development continue unabated (National Bureau of Statistics, 2018; KOSIS, 2018). In addition, more than 60 rivers flow to the YS and BS, including major rivers of South Korea (Han, Geum, and Yeongsan) and China (Liaohe, Haihe, Yellow, Dagu, and Guanhe), all of which convey organic contaminants to coastal waters (Wang et al., 2015; Zhen et al., 2016; Jeon et al., 2017). The study's data represent inputs from all the large cities and major rivers along the coast of the YSLME.

We employed a comprehensive field survey by collecting freshwater and saltwater sediments in the major rivers, estuaries, and some intertidal areas along the entire coasts of the YSLME. Four teams simultaneously conducted extensive field sampling for about three weeks in June-July 2018 in China and South Korea, in order to collect all the samples within a short period. We surveyed 125 locations in four provinces in South Korea (Gyeonggi, Chungnam, Jeonbuk, and Jeonnam) and four provinces in China (Liaoning, Hebei, Shandong, and Jiangsu), and one city in China (Tianjin) (Fig. 1). Detailed information on sampled locations, including geographic location and basic water quality parameters, are provided in Table S2. In brief, the land-use types adjacent to the 125 sampled locations varied widely. There were 21 industrial locations, 20 municipal locations, 38 agriculture locations, 9 beaches, 6 aquaculture locations, 5 salterns, and 26 barren lands (unused area). We assigned land-use types based on dominant surrounding activity at the time of sampling and supplemented our records by referring to the previous studies that provided data on land-use type at the same locations (Jiao et al., 2012; Hong et al., 2012b). We collected surface sediment samples using stainless steel devices (from top 2 cm), consisting of three replicate at each site, and then stored the samples in pre-cleaned glass bottles. We stored all collected sediment samples in a cooler at -20 °C for transportation to a laboratory.

#### 2.2. Chemicals and reagents

We obtained standards for target PTSs from ChemService (West Chester, PA), which included 16 PAHs, including naphthalene (Na), acenaphthylene (Acl), acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), anthracene (Ant), fluoranthene (Fl), pyrene (Py), benzo [a]anthracene (BaA), chrysene (Chr), benzo [b]fluoranthene (BbF), benzo [k]fluoranthene (BkF), benzo [a]pyrene (BaP), indeno [1,2,3-c,d] pyrene (IcdP), dibenz [a,h]anthracene (DahA), benzo [g,h,i]perylene (BghiP), and another 23 alkyl-PAHs. We obtained authentic standards

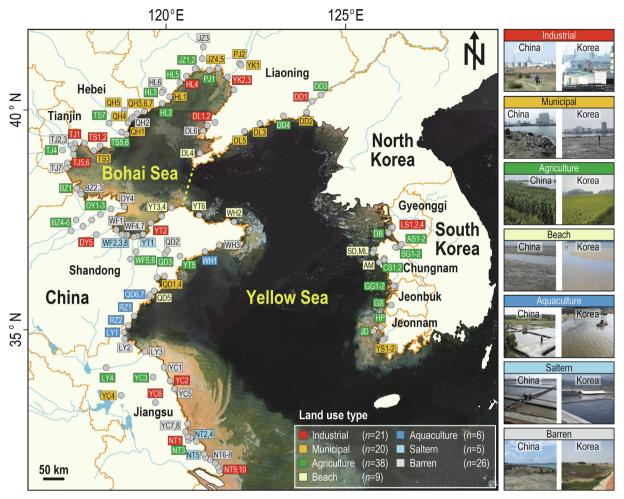



Fig. 1. Map showing the sampled locations in the Yellow and Bohai seas. The images on the right depict typical land-use types in South Korea and China (land-use classifications are based on dominant surrounding activity). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

for 6 APs and 10 SOs from Sigma-Aldrich, Wako Pure Chemical Ind. (Osaka, Japan) and Hayashi Pure Chemical Ind. (Osaka, Japan), which included 4-tert-octylphenol (OP), 4-tert-octylphenol monoethoxylate (OP1EO), 4-tert-octylphenol diethoxylate (OP2EO), nonylphenols (NPs), nonylphenol monoethoxylates (NP1EOs), and nonylphenol diethoxylates (NP2EOs), 1,3-diphenylpropane (SD1), cis-1,2-diphenylcyclobutane (SD2), 2,4-diphenyl-1-butene (SD3), trans-1,2-diphenylcyclobutane (SD4), 2,4,6-triphenyl-1-hexene (ST1), 1e-phenyl-4e-(1-phenylethyl)-tetralin (ST2), 1a-phenyl-4e-(1-phenylethyl)-tetralin (ST3), 1a-phenyl-4a-(1-phenylethyl)-tetralin (ST5), and 1,3,5-triphenylcyclohexane (isomer mix) (ST6). Detailed information and abbreviations for the target compounds are provided in Table S3.

#### 2.3. PTSs analyses

In the laboratory, we prepared sediment samples for analyses of PTSs following previous methods of Khim et al. (1999) and Hong et al. (2016), with minor modifications. With a Soxhlet extractor, we extracted freeze-dried and homogenized 10 g of sediment over a 16 h period with five surrogate standards (acenaphthene- $d_{10}$ , phenanthrene- $d_{10}$ , chrysene- $d_{12}$ , perylene- $d_{12}$ , and bisphenol A- $d_{16}$ ) and 300 mL dichloromethane (DCM) (Burdick & Jackson, Muskegon, MI). Activated copper powder (Sigma Aldrich, Saint Louis, MO) was added to remove elemental sulfur. Organic extracts were then concentrated using rotary evaporators and fractionated with activated silica gel column (70–230

mesh, Sigma-Aldrich). We eluted the first fraction (F1) for PAHs and SOs with 60 mL of 20% DCM in hexane (v/v) (Burdick & Jackson). We collected the second fraction (F2) for APs with 50 mL of 60% DCM in acetone (J.T. Baker, Center valley, PA). Then, extracts were concentrated using  $N_2$  gas flow and added 2-fluorobiphenyl as an internal standard

Target PTSs were quantified using an Agilent 7890A gas chromatograph equipped with a mass selective detector (GC-MSD) (Agilent Technologies, Santa Clara, CA). We injected each sample onto a DB-5MS Ultra Inert fused silica capillary column (30 m  $\times$  0.25 mm i.d.  $\times$  0.25 µm film, Agilent) for chromatographic separation. Details on the instrumental conditions for PTS analyses are provided in Table S3.

Method detection limits (MDLs) were defined as standard deviations 3.707-fold of standard materials quantified seven times. Concentration ranges for MDLs were 0.27–0.90 ng g $^{-1}$  dry weight (dw) for PAHs, 0.10–0.91 ng g $^{-1}$  dw for APs, and 0.24–0.91 ng g $^{-1}$  dw for SOs. The concentrations of PAHs in the procedural blank samples were all lower than those of MDLs. Recoveries for the five surrogate standards were 68–96% (mean = 80%) for acenaphthene- $d_{10}$ , 90–121% (mean = 110%) for phenanthrene- $d_{10}$ , 75–105% (mean = 93%) for chrysene- $d_{12}$ , 69–98% (mean = 88%) for perylene- $d_{12}$ , and 62–90% (mean = 78%) for bisphenol A- $d_{16}$ . Recovery rates of the standard reference material 1944 were generally acceptable, ranging from 80% to 126% (mean = 106%) (Table S4).

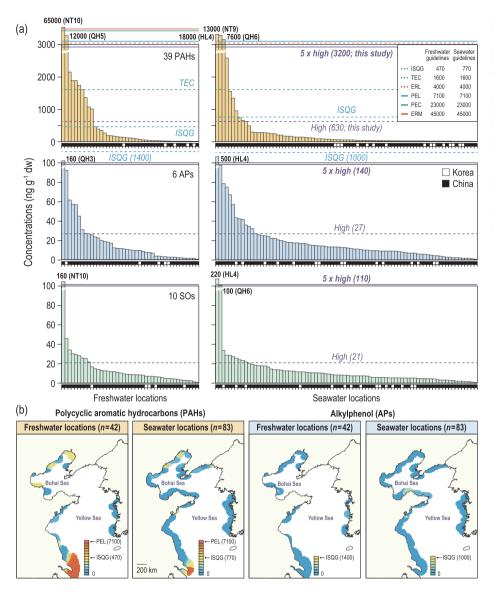



Fig. 2. Distributions of PTSs in sediments of the Yellow and Bohai Seas. Panels: (a) PAHs (n = 39), APs (n = 6), and SOs (n = 10) and (b) potential ecological risk from low (blue) to high (red) levels of contamination. High concentrations are defined as the 85th percentile of samples in this study, whereas 5-x-high concentrations are five times higher than the High concentration. Dotted and solid lines indicate existing sediment quality guidelines [(ISQG: interim sediment quality guidelines, PEL: probable effect levels (CCME, 2001; CCME, 2002); TEC and PEC: threshold and probable effect concentrations (Solberg et al., 2003); ERL and ERM: effect range low and median values (Long et al., 1995)]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

#### 2.4. TOC, TN, and stable isotopes analyses

To determine the grain sizes of sediments, we treated about 20 g of sediment with hydrogen peroxide before being analyzed with a Mastersizer 3000 (Malvern Panalytical, Malvern, West Midlands). We freeze-dried and homogenized sediments for analyzing total organic carbon (TOC), total nitrogen (TN), and stable isotope ratios of carbon ( $\delta^{13}$ C). To decalcify sediments for TOC and  $\delta^{13}$ C analyses, acidified samples were acidified with 1 M HCl. Then samples were washed three times with deionized water, and freeze-dried them again. TOC, TN, and  $\delta^{13}$ C were then measured with an Elemental Analyzer-Isotope Ratio Mass Spectrometer (EA-IRMS) (Elementar, Gmbh, and Hanau). All isotopic compositions were expressed as  $\delta$  notation (‰) (Eq. (1)):

$$\delta^{13}C (\%) = [R_{\text{sample}}/R_{\text{reference}} - 1] \times 1000$$
 (1)

wherein R is the composition ( $^{13}$ C/ $^{12}$ C) of the sample and reference. We used Vienna Peedee Belemnite (VPDB) as carbon reference material and IAEA-CH-3 [International Atomic Energy Agency (IAEA), Vienna, Austria] as a standard material. The analytical errors were 0.04‰ for C estimated by IAEA working standards [CH-6 for carbon, International Atomic Energy Agency (IAEA), Vienna, Austria].

#### 2.5. Positive matrix factorization receptor model

We employed the U.S. Environmental Protection Agency positive matrix factorization (PMF) receptor model (Ver. 5.0) to source apportion PAHs, which is a generic factorization method for quantifying the contribution of source compositions (Larsen and Baker, 2003; Norris et al., 2014). Each factor contribution and profile is drawn from minimizing the objective function Q, defined as

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left[ \frac{x_{ij} - \sum_{k=1}^{p} g_{ik} f_{kj}}{u_{ij}} \right]^{2}$$
(2)

wherein  $u_{ij}$  is the uncertainty in the  $x_{ij}$  measurement,  $x_{ij}$  is the concentration of species j in sample i, p is the number of factors,  $g_{ik}$  is a relative contribution of each factor k, and  $f_{kj}$  is species profile of each source. Uncertainties (Unc) for each PAH relative to each MDL were calculated using either Eq. (3) or Eq. (4) (below), following PMF user guidelines. Eq. (3) was used when the concentration was less than the MDL; Eq. (4) was used when the concentration was higher than the MDL.

$$Unc = 5/6 \times MDL \tag{3}$$

$$Unc = \sqrt{(ErrorFraction \times concentration)^2 + (0.5 \times MDL)^2}$$
 (4)

wherein the *ErrorFraction* was calculated as the standard deviation of the concentration of j. When the detection frequency was < 40%, Acl, Ace, Dbthio, and alkyl-PAHs were excluded. Additionally, Na was not included in the model due to possible losses of it during analysis.

#### 2.6. Data analyses

We categorized concentrations of PTSs following methods outlined by NOAA (1991) and Daskalakis and O'Connor (1995). 'High' concentrations of PTSs were defined as the 85th percentile value among all concentrations measured. The High and five-times-High (5-x-High) concentrations in sediments of YS and BS are suggested for providing regional criteria of PTSs in sediments. Using the definition for High PTS concentrations, we categorized all locations as being High, 5-x-High, or Low (neither High nor 5-x-High). SPSS 25.0 (SPSS INC., Chicago, IL) was used to conduct statistical analyses and used non-parametric statistical analysis for data that were not normally distributed. Differences in concentrations of PTSs by land-use type and region were evaluated with the Kruskal-Wallis test and the Mann-Whitney test with Bonferroni correction. Principal Component Analysis (PCA) was performed using fourth-root transformed values of PTS concentrations and physicochemical parameters and linear regression analysis was used to understand the relationship between concentrations of PTSs and physicochemical parameters. To compare our data to guidelines of the Canadian Council of Ministers of the Environment (CCME, 2002), we converted concentrations of APs with toxic equivalency factors (TEFs) and normalized them to 1% TOC, as outlined in Section 3.2 of CCME guidelines. For the 16 PAHs provided for South Korea and China in 2008, we used data reported by Hong et al. (2012b).

#### 3. Results and discussion

#### 3.1. Distributions of PTSs in sediments of Yellow and Bohai seas

PAHs, APs, and SOs were detected in all sediments of the YS and BS (Fig. 2a, Table S5, and Table S6). Concentrations of PAHs in the YS and BS ranged from 6.2 to 65000 ng g $^{-1}$  dw in sediment from freshwater locations and 2.1 to 18000 ng g $^{-1}$  dw in sediment from seawater locations. The high concentrations exceeding 5-x-High concentration (3200 ng g $^{-1}$  dw) were detected in both industrial (NT10, HL4, and NT9) and municipal locations (QH5 and QH6) (Table S2). In previous studies, relatively lower concentrations of PAHs had been detected (20–5700 ng g $^{-1}$  dw) from some areas sampled in present study (Ma et al., 2001; Jiao et al., 2012; Zhang et al., 2014), despite them not having changed in their land-use designations, which suggested that these areas have been affected by increasing contamination sources.

We compared the High and 5-x-High concentration categories of our study to other defined criteria, including effect-range low (ERL) and effect-range median (ERM) concentrations defined by Long et al. (1995), threshold-effect concentrations (TEC) and probable-effect concentrations (PEC) defined by Solberg et al. (2003), and interim sediments quality guidelines (ISQG) and probable effect levels (PEL) defined by CCME (2001) (Fig. 2 and Table 1). Our High and 5-x-High concentrations were similar to the threshold effect concentration guidelines (TECs), such as ERL, TEC, and ISOG. However, both High and 5-x-High concentrations were lower than the probable effect concentration guidelines (PECs), such as ERM, PEC, and PEL. In addition, our High and 5-x-High concentrations for individual compounds were generally lower than TECs and PECs, with the exception of DbahA, which was higher than TECs and PECs, indicating input from sources specific to the Yellow and Bohai seas. Overall, regional criteria of PAHs for YS and BS were similar or lower than existing sediment quality guidelines, indicating that YS and BS were moderately contaminated by PAHs.

Concentrations of PAHs exceeding guidelines were found mainly in the Yellow Sea of China (YSC) and the BS. In the Yellow Sea of South Korea (YSK), we did not detect High and 5-x-High concentrations, whereas concentrations at two locations (NT10 and NT9) in the YSC and three sites (HL4, QH5, and QH6) in the BS exceeded the 5-x-High concentrations. Thirty-three locations [YSC (n = 10) and BS (n = 23)] exceeded ISQG guidelines, whereas five locations [YSC (n = 2) and BS (n = 3)] exceeded PEL guidelines (Table S4). Concentrations exceeding TEC were detected at one location in YSC and 12 locations in BS, whereas PEC criteria were exceeded at two locations in YSC and at one site in BS. Six locations exceeded ERL guideline and two locations exceeded ERM guidelines in YSC and BS. PAHs in the sediment of the YS and BS mostly exceeded the criteria of CCME, but did not exceed all of the criteria for locations along the YSK. Most of the sampled locations that exceeded threshold criteria were situated near industrial and municipal areas, suggesting that PAH pollution is closely associated with land-use intensity.

Concentrations of APs in the sediments of freshwater rivers feeding the YS and BS ranged from 0.5 to 160 ng  $g^{-1}$  dw (mean = 20 ng  $g^{-1}$ dw), whereas APs in seawater sediments ranged from 0.6 to 500 ng g  $^{-1}$ dw (mean =  $23 \text{ ng g}^{-1}$  dw). High concentrations of APs exceeded 5-x-High concentrations at location HL4 (500 ng g<sup>-1</sup> dw) and location QH3 (160 ng g<sup>-1</sup> dw), followed by locations QD1, GG1, QH4, and WH1. These locations comprised a variety of land-use, such as industrial, municipal, agriculture, and aquaculture land-uses, indicating that contamination by APs was site-specific and not associated with any one type of land-use. In addition, concentrations of APs in those locations were similar to concentrations measured by Jeon et al. (2017) at Geumgang (32–180 ng g $^{-1}$  dw) and Wang et al. (2011) at Panjin and Yingkou (28–380 ng g $^{-1}$  dw), indicating the continued use of APs. High and 5-x-High concentrations were lower than ISQG of CCME, and the number of locations measured with High concentrations of APs was similar in YS and BS. The three locations (15%) occurring in sediments of the YSK, eight locations (19%) in YSC, and eight locations (11%) occurring in the BS, indicating that contamination of sediments by APs is similar in the YS and BS seas.

The mean concentrations of SOs in the YS and BS were 16 ng g $^{-1}$  dw (range 0.9–160 ng g $^{-1}$  dw) at freshwater locations and 14 ng g $^{-1}$  dw (range 0.7–220 ng g $^{-1}$  dw) at seawater locations. We measured relatively high concentrations of SOs near industrial and municipal areas (locations HL4, NT10, QH6, DY5, and YC6) (Table S2) and only site HL4 (BS) and site NT10 (YSC) exceeded the 5-x-High concentrations (110 ng g $^{-1}$  dw). This study is the first to report SOs concentrations in YSC and in BS. The concentrations were less than reported in the creeks feeding Lake Sihwa (mean = 400 ng g $^{-1}$  dw) and Masan Bay (mean = 130 ng g $^{-1}$  dw) in Korea and were similar to coastal areas of Gyeonggi Bay (mean = 25 ng g $^{-1}$  dw) and the Geum River Estuary (mean = 14 ng g $^{-1}$  dw) in Korea (Hong et al., 2016; Yoon et al., 2017; Lee et al., 2018). In general, we found that SOs contamination in YS and BS was lower than determined by previous studies, although we detected high concentrations at some locations, suggesting the need for further research in high concentration regions.

Sources of organic matter in sediments varied in Yellow and Bohai seas. In general, the  $\delta^{13}$ C values for organic matter from terrestrial origin are about -27% to -25% (Schubert and Calvert, 2001; Lehmann et al., 2002), whereas  $\delta^{13}$ C values from marine origins are about -22% to -20% (Peters et al., 1978; Meyers, 1994). The mean values of  $\delta^{13}$ C in our study area were  $-24.0 \pm 2.2\%$  at freshwater locations and  $-22.0 \pm 1.9\%$  at marine (seawater) locations (Fig. S1), indicating a mixture of terrestrial and marine origins. These values are similar to the previous studies reported for the Yellow Sea and Korean coastal areas; Geum River (-32.6% to -19.4%; Kang et al., 2019), Seomjin River (-29.1% to -24.6%; Kang et al., 2019), Lake Sihwa and surrounding inland creeks (-32.2% to -20.4%; Lee et al., 2017), and eastern Yellow Sea (-23.5% to -20.9%; Yoon et al., 2016). Among locations of the study area, we found relatively low  $\delta^{13}$ C values in sand beach (location SD) and estuarine sediments (locations DD2, QH4, QH7, BZ3, NT1, and NT5). These low  $\delta^{13}$ C values may be due to

Table 1
Sediment quality guidelines (SQGs) for threshold effect concentrations (TECs: ISQG, TEC, and ERL) and probable-effect concentrations (PECs: PEL, PEC, and ERM) of contaminants. Concentrations are provided relative to 15th, 50th, and 85th percentiles for 125 sites. High concentrations were defined as the 85th percentile value of total concentration.

| Compound               | SQGs | SQGs |      |      |       |       |      |                   | This study |      |          |  |  |
|------------------------|------|------|------|------|-------|-------|------|-------------------|------------|------|----------|--|--|
|                        | TECs |      |      | PECs | PECs  |       |      | Concentration (%) |            |      | Criteria |  |  |
|                        | ISQG | TEC  | ERL  | PEL  | PEC   | ERM   | 15th | 50th              | 85th       | High | 5*High   |  |  |
| Naphthalene            | 35   | 180  | 160  | 390  | 560   | 2100  | 7.1  | 11                | 20         | 20   | 100      |  |  |
| 2-methyl naphthalene   | 20   | 20   | 70   | 200  | 200   | 670   | 1.8  | 2.7               | 7.6        | 7.6  | 38       |  |  |
| Acenaphthylene         | 5.9  | 5.9  | 44   | 130  | 130   | 640   | 1.8  | 2.9               | 8.6        | 8.6  | 43       |  |  |
| Acenaphthene           | 6.7  | 6.7  | 16   | 89   | 89    | 500   | 2.4  | 6.0               | 23         | 23   | 120      |  |  |
| Fluorene               | 21   | 77   | 19   | 140  | 540   | 540   | 1.9  | 3.1               | 13         | 13   | 65       |  |  |
| Phenanthrene           | 87   | 200  | 240  | 540  | 1200  | 1500  | 1.7  | 4.8               | 20         | 20   | 100      |  |  |
| Anthracene             | 47   | 57   | 85   | 250  | 850   | 1100  | 0.6  | 1.6               | 9.3        | 9.3  | 47       |  |  |
| Fluoranthene           | 110  | 420  | 600  | 1500 | 2200  | 5100  | 1.8  | 7.5               | 51         | 51   | 250      |  |  |
| Pyrene                 | 150  | 200  | 670  | 1400 | 1500  | 2600  | 1.7  | 6.8               | 46         | 46   | 230      |  |  |
| Benz(a)anthracene      | 75   | 110  | 260  | 690  | 1100  | 1600  | 1.1  | 4.8               | 44         | 44   | 220      |  |  |
| Chrysene               | 110  | 170  | 380  | 850  | 1300  | 2800  | 1.8  | 9.4               | 82         | 82   | 410      |  |  |
| Benzo(a)pyrene         | 89   | 150  | 430  | 760  | 1500  | 1600  | 1.9  | 8.9               | 110        | 110  | 550      |  |  |
| Dibenzo(a,h)anthracene | 6.2  | 33   | 63   | 140  | 140   | 260   | 2.9  | 12                | 93         | 93   | 460      |  |  |
| Total PAHs             | 770  | 1600 | 4000 | 7100 | 23000 | 45000 | 14   | 62                | 630        | 630  | 3200     |  |  |
| Alkylphenols           | 1000 |      |      |      |       |       | 2.8  | 11                | 27         | 27   | 140      |  |  |

biogeochemical process (e.g., decomposition by microbial activity) and/or hydrodynamic conditions such as freshwater and seawater mixing (Chen et al., 2005; Gao et al., 2012). In addition, relatively high  $\delta^{13}$ C values were found in riverine system (locations JZ3, JZ4, DY2, DY3, WF5, QD2, LY4, and GG1), probably due to heavy algal blooms and/or agricultural runoff of organic material from C4 plants (Shi et al., 2017; Kang et al., 2019).

Sources of organic matter measured by carbon/nitrogen (C/N) ratios showed a pattern similar to  $\delta^{13}$ C values. The C/N ratios of marine origin were between 4 and 12, whereas C/N ratios of terrestrial origin were above 12 (Wu et al., 2007; Szczepańska et al., 2012). C/N ratios in the present study ranged from 0.76 to 52 in freshwater locations and from 2.66 to 66 in seawater locations, indicating mixed sources of organic matter. Relatively low or high C/N ratios were found in riverine and estuarine sediments and from beach sand, which may be due to bacterial decomposition in response to superimposed effects of carbon and nitrogen influx or efflux into/from organic matter (Rice and Tenore, 1981; Thornton and McManus, 1994). Overall, the sediment stable isotopic signatures identified in the Yellow and Bohai seas would indicate a mixture of terrestrial and marine sources for the organic matters, with some regionally specific values

Concentrations of PTSs were correlated with particular physicochemical parameters of sediments (Fig. S2). PCA analysis showed that the PC2 axis explained the positive relationship between PTSs and TOC and the negative relationship between PTS and  $\delta^{13}$ C, whereas the axis weakly correlated with grain size and C/N ratio. Results of regression analysis showed significant correlation between PTSs and TOC (positive: r = 0.29-0.65, p < 0.01), whereas PAHs and SOs were significantly correlated with  $\delta^{13}$ C (negative: r = 0.18–0.26, p < 0.05). The correlative relationships with TOC were similar to that found in previous studies by Liu et al. (2013) and Yoon et al. (2017). Correlation of TOC with  $\delta^{13}\mathrm{C}$  indicates that PAHs and SOs are derived from terrestrial organic sources, as opposed to previously reported results identifying sources as originating in estuary (Yoon et al., 2017). However, both seawater and freshwater locations had high concentrations of PTSs, suggesting that the concentrations of PTS are related to the TOC and source of organic carbon, regardless of whether they are derived from coastal or more landward locations.

#### 3.2. Assessment of potential ecological risks

We assessed the potential ecological risk posed by the detected PTSs

using ISQG and PEL suggested by CCME (CCME, 2001, 2002). Of the 125 locations we sampled, concentrations of PAHs exceeded ISOG and PEL at 43 locations (Fig. 2b and Table S5). Concentrations of PAHs in sediments exceeded thresholds at 22% of seawater locations (18 of 83 locations) and 48% of freshwater locations (20 of 42 locations). Six PAHs (Na, 2-Na, BaA, Chr, BaP, and DbahA) exceeded ISOG at seawater sites DD, DL, and QD in the YSC and at sites YK, JZ, HL, QH, and TS in the BS. In freshwater locations, 10 PAHs (Na, 2-Na, Ace, Phe, Fl, Py, BaA, Chr, BaP, and DbahA) exceeded ISQG at sites DD and YC in the YSC and at sites DL, YK, PJ, JZ, HL, QH, TS, and DY in the BS. Some PAHs (including Ace, Flu, Phe, Ant, Fl, Py, BaA, Chr, BaP, and DbahA) exceeded PEL thresholds at locations NT10, NT9, HL4, QH5, and QH6. Locations in the YSK did not exceed ISQG and PEL, indicating higher potential risk to aquatic organisms in sediment of China than Korea. Most locations exceeding sediment quality guidelines were from industrial or municipal areas, indicating that land-use type affects the distributions of PAHs at concentrations that may detrimentally impact aquatic ecosystems.

Concentrations of APs-TEQ were generally lower than ISQG in both seawater and freshwater locations. We found relatively high concentrations of APs-TEQ in seawater locations in the YSC (sites YT and QD) and the freshwater area of the YSK (location GG1) and the BS (sites DY). However, in all regions, concentrations did not exceed ISQG, indicating a lower potential ecological risk of APs in the YS and BS. Overall, high potential risks to aquatic organisms were found from PAHs from sediments from YS and BS, suggesting that continuous monitoring and management would be needed.

#### 3.3. Compositions and sources of PTSs

We confirmed the gradient in the compositions of PTSs by concentration (Fig. S3). The composition of high molecular weight (HMW: 4–6 rings) PAHs dominated the top 20% of PAHs concentration, whereas the composition of low molecular weight (LMW: 2–3 rings) PAHs increased as concentrations of PAHs declined. LMW PAHs were dominant in sediments of the YSK, but HMW PAHs dominated sediments of the YSC and BS, indicating that PAHs in those areas are derived from different sources. Among APs, the compositions of NPs and NPEOs were higher than OP and OPEOs in the top 20% of concentration of APs, with NPs being the most prevalent. At less contaminated locations, compositions of OPEOs were higher when concentrations of NPs and NPEOs were lower, which suggests that the use of NPEOs has

#### (a) Sources of PAHs

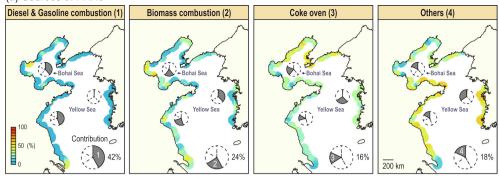
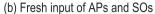
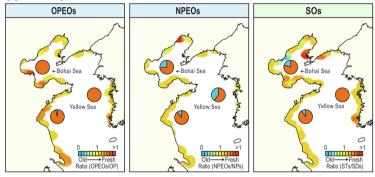





Fig. 3. Spatial-distribution of PTSs in sediments of the study area. Panels: (a) sources of PAHs derived with a PMF receptor model and (b) fresh (recent) input ratios of OPEOs, NPEOs, and SOs. The contributions represent the proportions of PTS from each source to total PTSs and regional concentrations of PAHs (Yellow Sea of Korea, Yellow Sea of China, and Bohai Sea). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)





continued in highly contaminated locations. Compositions of NPEOs were highest in BS, followed by YSC and YSK, indicating that sediments in China are more contaminated by APs than Korea. Styrene trimers (STs) dominated the top 20% concentrations of SOs and the compositions of styrene dimers (SDs) increased as the concentration of SOs declined. However, the compositions of SOs in the YSK, YSC, and BS were similar, indicating that concentrations and sources of SOs are not related to specific regions, but are site-specific.

The four leading potential sources of PAHs were identified by PMF model (Fig. 3). The primary PAHs source was characterized by BbF (68%), BaP (66%), IcdP (66%), BkF (65%), BghiP (65%), Chr (60%), BaA (59%), and DbahA (55%) (Table S7). These contributors indicate that the primary source of PAHs was strongly linked to diesel and gasoline combustion (Harrison et al., 1996; Simcik et al., 1999; Rayindra et al., 2008). Diesel and gasoline sources contributed to 0.7% (YSK), 45% (YSC), and 39% (BS), for concentrations of PAHs, by region, and 42% (62000 ng  $g^{-1}$ ) of the total concentration of PAHs in YS and BS. However, among all locations sampled, only nine locations were dominated by PAH from diesel and gasoline combustion. In the YSK, this source of combustion was not dominant in sediments overall, but they did dominate in three locations (NT9, NT10, and QD1) in the YSC and six locations (HL4, QH3, QH5, QH6, TS2, and TS3) in the BS. These results indicate that sources of PAHs in diesel and gasoline combustion mainly affected high concentration areas.

The secondary source of PAHs was characterized by Fl, Py, Phe, Flu, BaA, and Ant (Table S7), particularly high proportions of Fl (46%), Py (46%), and Phe (41%), which suggests that biomass combustion in the main secondary source of PAHs (McGrath et al., 2001; Guzzella et al., 2016). This secondary source of PAH contributed 35000 ng g $^{-1}$  (24% of total PAHs) in YS and BS and 37% regionally (mainly at sites LS and GG) in the YSK, 26% (mainly at sites YC and NT) in the YSC, and 22% (mainly at sites TJ) in the BS. These results indicate that by-products of biomass combustion are more concentrated in sediments of the YSK than the YSC and BS.

The tertiary source of PAHs was dominated by Flu, DbahA, Phe, and Ant (Table S7). The major constituent, Flu (43%), is a by-product of

producing coke (Kwon and Choi, 2014). In addition, major mass fractions of Phe and Ant are considered particular indicators of Coke oven combustion (Khalili et al., 1995). The signature of coke ovens mainly dominated sediments of the BS, but the regional contribution was 21%. The regional contributions of YSK and YSC were 28% and 13%, but the coke oven sources had the lowest total contribution (16%) of the total concentration of PAHs (23000 ng g $^{-1}$ ). This result indicates that coke oven by-products have the least impact in sediments of the YS and BS.

Finally, the fourth source contributor to PAH pollution in sediments was comprised of Flu, Ant, BbF, BkF, BaP, and BghiP (Table S7), but the factor profile was too low (< 20%) and was composed of a variety of chemical species. This source of PAHs occupied the highest proportion for all regions. The contribution of PAHs to sediments was 34% (YSK), 17% (YSC), 19% (BS), and 18% (26000 ng g<sup>-1</sup>: contribution to total). These contributions indicated that the relatively less polluted locations are mainly dominated by the chemical species listed above (especially in the sediments of the YSK). The diagnostic ratios of PAHs also showed similar sources as those determined by the PMF model (Fig. S4). The results indicated that PAHs in the sediment of Yellow and Bohai seas were mainly derived from petroleum combustion and biomass & coal combustion. Although the ratios did not quantitatively determine the impact of each source, we observed the same trends in the Bohai Sea, where coal and biomass combustion sources were identified as dominated inputs.

We determined fresh inputs of OPEOs, NPEOs, and SOs by calculating the proportion of degraded chemicals to fresh chemicals (Hong et al., 2016; Yoon et al., 2017). In all studied regions, fresh inputs to sediments were dominant in the YS and BS. In OPEOs, all input ratios, except at QD3, suggested fresh inputs of OPEOs. The highest input ratio was found at location DY5, upstream of the Yellow River, indicating intensive use of OPEOs around the industrial area of location DY5 (Table S2). Subsequently, the ratios for sites LS, QD, AS, NT, WF, and YT were also high, indicating that OPEOs are used in all regions near the YS and BS. The fresh input of NPEOs varied by region and locations. For example, fresh inputs were high in sediments at location HL4 (adjacent to an industrial area), indicating intensive use of NPEOs by the

industry located there. In addition, fresh inputs were evident at sites DD, QH4, QD7, TJ, DY, and WF in BS, at sites YT, WH, QD, RZ, LY, YC, and NT in YSC, and at sites LS and AS in YSK. In contrast, at sites YK, PJ, QH3, and QD6 in the BS, and at sites GG in YSK showed ratios exhibiting a predominance of degraded (old) NPEOs. These results indicate that recent inputs dominate most regions, but the degree of intensity is site-specific (Yoon et al., 2017).

Fresh inputs of SOs also dominated sediments in the YS and BS. At sites DL in the BS, highest fresh inputs were found in regions where we detected SDs and STs, indicating the copious use of precursors of SOs in manufacturing, such as in polystyrene production. In the YS, at sites JD and YS in YSK showed the highest fresh inputs of SOs, followed by all the other locations sampled in YSK, indicating continuous, reoccurring inputs of SOs throughout YSK. We found a predominance of degraded SOs at a few sites (HL, TS, DY, YT, and YC), with TS exhibiting the highest degradation ratio in sediments, indicating less use of plastic materials in TS than in other regions. Our results indicated that fresh inputs of SOs are derived from localized industrial and municipal activities and that they show the same trend as a previous study by Hong et al. (2016). Overall, fresh inputs of PTSs dominated the YS and BS, but distributions were regionally- and site-specific.

#### 3.4. PTSs distributions by land-use types

The distributions of PTSs by land-uses varied by chemical constituent (Fig. 4). The highest concentrations of PAHs were associated with industrial land-use, followed (in order) by municipal, agriculture, aquaculture, saltern, barren lands, and beach land-uses. The concentrations of PAHs in industrial and municipal areas differed significantly from concentrations in other land-use types (p < 0.05) (Table S8). At the regional scale, concentrations of PAHs in sediments of the YSK were less than in other areas, regardless of land-use type  $(< 200 \text{ ng g}^{-1} \text{ dw})$ , and there were no significant differences among land-use types (Table S8). In contrast, we found significant differences in sediment concentrations in the YSC and BS between industrial, municipal, and other land-use types (p < 0.05). Our results indicate that concentrations of PAHs are associated with land-use type, but differ among regions. In addition, differences in the concentration of PAHs were statistically significant (p < 0.05) among regions relative to industrial land-use (Table S9). We attribute these differences to variations in land-use intensity in industrial areas of South Korea and China and in how the various regions pre-treat discharged wastewater (Li et al., 2010; Luo et al., 2014). The same land-use designation showed a wide range of concentrations of PAHs across regions, which in some regions correlated significantly with sediment mud content, TOC, or TN (Table S10). However, such correlations could not explain the distributions of PAH concentrations in YS and BS, which might be explained by differences in the types of other contaminants delivered from the same land-use types in different areas or the various impacts of nonpoint pollutants in sediments (Stout and Graan, 2010).

Concentrations of APs were highest in industrial areas, followed (in order) by aquaculture, municipal, saltern, agriculture, barren lands, and beach land-uses, but differences were not statistically significant (p > 0.05) (Table S8). At the regional scale, concentrations of APs by land-use types showed a similar trend among regions. Although the ordering of concentration of APs by land-use type varied slightly among sediments in the YSK, YSC, and BS, they were not significantly different in ranking (p > 0.05) (Table S8). In addition, for a given land-use type, we found a significant difference in concentrations of APs only for the beach land-use type between the YSK (mean =  $5.0 \text{ ng g}^{-1} \text{ dw}$ ) and YSC (mean = 11 ng g<sup>-1</sup> dw) (p < 0.05) (Table S9), but the overall concentration was less than in other land-use types. These results indicate that for all land-use types, similar concentrations of APs accumulated in sediments of the YS and BS. Concentrations of APs by land-use types in each region could be explained by differences in environmental conditions for some regions, but we found no obvious trend in YS and BS

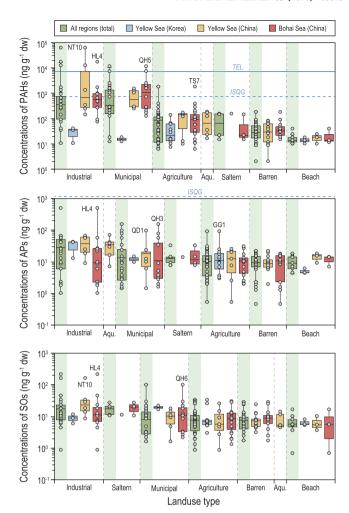



Fig. 4. Box plot of PAHs, APs, and SOs relative to seven land-use types [industrial, municipal, agriculture, beach, saltern, barren, and aquaculture (Aqu.)]. Each dot represents raw data of PTS measurements. Dotted and solid lines indicate existing sediment quality guidelines [(ISQG: interim sediment quality guidelines, PEL: probable effect levels (CCME, 2001, 2002)]

(Table S10). These results suggested that the distribution of APs is more dependent on specific pollutant sources than on land-use type or other environmental factors throughout the YS and BS, as has been found in other studies of coastal contaminants (EPA, 2010).

Concentrations of SOs in sediments associated with each land-use type differed significantly (p < 0.05) among types, but the post-hoc test did not identify any differences between each land-use type (Table S8). Concentrations of SOs in each region were similar regardless of land-use type with no significant difference in mean concentrations of SOs relative to land-use types (p > 0.05) (Table S8). Moreover, concentrations from the YSK, YSC, and BS in relative to any given land-use type were also not statistically significant (p > 0.05) (Table S9). Correlations of land-use type with environmental variables were regionspecific (Table S10), indicating that land-use type is not significantly related to concentrations of SOs. However, relatively high concentrations of SOs in sediments at locations HL4, NT10, and QH6 were related to specific ambient sources from industrial and municipal land-uses. Hong et al. (2016, 2019) suggested that the distribution of SOs released from industrial and municipal sources are similar, but that the magnitude of release is site-specific. Overall, we found that the distributions of SOs in the YS and BS depend more on regional specific sources than by land-uses or environmental variables.

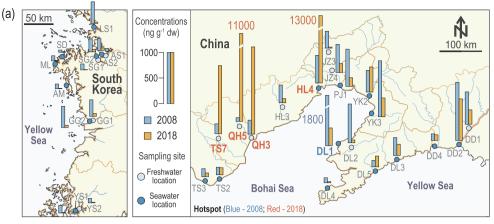
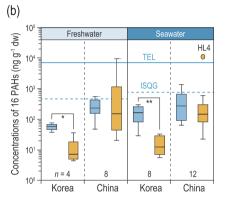
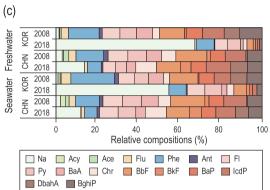





Fig. 5. The change observed over time (2008–2018) for 16 polycyclic aromatic hydrocarbons (PAHs) in sediments in South Korea and China relative to freshwater and saltwater environments. Panels: (a) spatial distribution of PAHs, (b) box plots for PAHs in freshwater and seawater locations, and (c) change in relative compositions of PAHs, by chemical species, over time. The ISQG and PEL are depicted with horizontal lines in Panel b (CCME, 2001).





#### 3.5. Comparison of PTSs contaminations between 2008 and 2018

Change over time in the distributions of PAHs between 2008 and 2018 in Korea (YSK) and China (BS and YSC) differed (Fig. 5a). Concentrations of PAHs in YSK declined at all freshwater and seawater locations, and all locations not already exceeding sediment quality guidelines (ISQG and PEL). There was a significant difference in PAH concentrations over time at freshwater (p < 0.05) and at seawater locations (p < 0.01) (Fig. 5b). The change might be explained as a response to regulations by the Ministry of Environment (MOE, 2009) to control the release of PTSs to the environments.

In contrast, concentrations of PAHs in sediments in BS and YSC were site-specific relative to freshwater and seawater locations. Concentrations of PAHs generally declined in 2018 relative to 2008. For example, concentrations had exceeded ISQG in 2008 (1700 ng g<sup>-1</sup> dw) at location DL1, but had declined 350 ng g<sup>-1</sup> dw below than ISQG by 2018. However, some concentrations were many times higher in 2018 than 2008, particularly at locations TS7 (6.9 times higher), QH3 (6.2 times higher), HL4 (24 times higher), and QH5 (150 times higher), all of which exceeded ISQG and PEL guidelines. In contrast, mean concentrations of PAHs slightly declined from 2008 to 2018, but not in a statistically significant degree (p > 0.05). Our results indicate that environmental regulations on persistent organic pollutants have not been enforced in BS and YSC, because concentrations of PAHs have increased over the past 10 years at some locations. In addition, changes in specific sources of PAHs could explain changes in distributions of PAHs in YSK, BS, and YSC over time (2008 to 2018).

The compositions of PAHs in Korea (YSK) and China (BS and YSC) between 2008 and 2018 appear to have changed (Fig. 5c). In 2008, The HMW PAHs dominated in both freshwater (78%) and saltwater locations (70%) in YSK, whereas LMW PAHs were detected in high proportions in 2018 at both freshwater locations (77%) and seawater locations (64%). This change in predominant types of PAHs indicates that the sources in 2008 were mainly pyrogenic in origin (Gschwend and

Hites, 1981; Budzinski et al., 1997). However, because LMW compounds have relatively high volatility, we speculate that sources of PAHs in 2018 were likely derived from air-water exchanges and atmospheric deposition (Tobiszewski and Namiesnik, 2012). Compositions of PAHs in BS and YSC did not change much between 2008 and 2018 at either freshwater or saltwater locations.

HMW PAHs dominated (upper 75%), regardless of year and salinity of sampling locations, but in some sites in BS, HMW PAHs concentrations increased by > 90% by 2018, such as at locations TS7, QH3, QH5, and HL4. PAHs with 5–6 rings, including BbF, BaP, IcdP, and BghiP, dramatically increased, indicating an input of diesel and gasoline combustion (Fig. S5) (Simcik et al., 1999; Ravindra et al., 2008) over the intervening 10-y period. Overall, in South Korea, concentrations of PAHs in sediments are now lower than they were 10 years prior due to efforts by the federal government to reduce PTSs. Meanwhile, higher concentrations were detected in 2018 in China, due to the lack of regulations to combat PAHs pollution. Because concentrations of PTSs were high enough to detrimentally impact aquatic ecosystems, further studies are necessary to better understand the sources, fates, and potential risks to the aquatic ecosystem.

#### 4. Conclusions

Our study quantifies contamination by various PTSs in freshwater and seawater sediments of the Yellow and Bohai seas and describes changes that have occurred over a decadal period. We found hotspots of contamination in some rivers and coasts in China, where extremely high concentrations of PAHs pose high risks to aquatic ecosystems. Our present study shows that by-products of diesel and gasoline combustion and industrial and municipal activities contribute to more than half the PAHs contamination of sediments in the Yellow and Bohai seas. In addition, we identified fresh inputs into the Yellow and Bohai seas in both South Korea and China due to the continued use of PTSs. However, there has been a significant decline in the concentration of PAHs in

South Korea from 2008 to 2018, whereas concentrations have increased in sediment of some regions in China due to the lack of enforcement of environmental regulations. In general, contamination by PTSs in sediments of the Yellow and Bohai seas has declined since 2008, but contamination has become more severe in some specific, highly industrializing and municipalizing areas in China. Consequently, the results of the present study suggest hotspot and potential sources of contaminants, which will provide valuable information for implementing pollution reduction policies (e.g., dredging of polluted sediments, total pollution loads management, etc.) which would contribute to the improvement of sediment quality in the Yellow and Bohai seas. Stepwise monitoring and continuing management practices are needed to control contamination and potential ecological risks to the Yellow and Bohai seas marine ecosystems.

#### CRediT authorship contribution statement

Seo Joon Yoon: Conceptualization, Investigation, Formal analysis, Visualization, Writing - original draft, Writing - review & editing. Seongjin Hong: Conceptualization, Formal analysis, Resources, Writing - review & editing. Seonju Kim: Formal analysis, Investigation, Data curation. Jongmin Lee: Investigation, Formal analysis. Taewoo Kim: Investigation, Formal analysis. Beomgi Kim: Investigation, Formal analysis. Bong-Oh Kwon: Investigation, Project administration, Resources. Yunqiao Zhou: Investigation, Formal analysis. Bin Shi: Investigation, Formal analysis. Peng Liu: Investigation, Formal analysis. Wenyou Hu: Visualization, Project administration, Data curation. Biao Huang: Investigation, Project administration. Tieyu Wang: Conceptualization, Writing - review & editing, Project administration, Funding acquisition, Supervision. Jong Seong Khim: Conceptualization, Writing - review & editing, Project administration, Funding acquisition, Supervision.

#### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Acknowledgments

This work was supported by National Research Foundation of Korea (NRF) grants funded by the South Korean government [grant number NRF-2017R1E1A1A01075067], and also was supported by projects entitled "Integrated Management of Marine Environment and Ecosystems Around Saemangeum [grant number 20140257]", "Development of Blue Carbon Information System and Its Assessment for Management [grant number 20170318]", and "Marine Ecosystem-Based Analysis and Decision-Making Support System Development for Marine Spatial Planning [grant number 20170325]", funded by the Ministry of Oceans and Fisheries of Korea (MOF), South Korea granted to J.S.K. This work was partly supported by the National Natural Science Foundation of China (Grant No. 41877512 and 41877905), and the National Key Research and Development Project of China (2017YFC0505702). We would also like to acknowledge support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

#### Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2020.105517.

#### References

Budzinski, H., Jones, I., Bellocq, J., Pierard, C., Garrigues, P., 1997. Evaluation of

- sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 58, 85–97. https://doi.org/10.1016/80304-4203(97)00028-5.
- CCME, 2001. Canadian sediment quality guidelines for the protection of aquatic life summary tables. Updated. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment Winnipeg. https://www.elaw.org/ system/files/sediment\_summary\_table.pdf.
- CCME, 2002. Canadian sediment quality guidelines for the protection of aquatic life: Nonylphenol and its ethoxylates. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg. http://ceqg-rcqe.ccme.ca/download/en/242?redir=1569847235.
- Chen, B.-S., Yen, J.-H., 2013. Effect of endocrine disruptor nonylphenol on physiologic features and proteome during growth in Arabidopsis thaliana. Chemosphere 91, 468–474. https://doi.org/10.1016/j.chemosphere.2012.11.072.
- Chen, C.-T.A., 2009. Chemical and physical fronts in the Bohai, Yellow and East China seas. J. Mar. Syst. 78, 394–410. https://doi.org/10.1016/j.jmarsys.2008.11.016.
- Chen, J., Wang, F., Meybeck, M., He, D., Xia, X., Zhang, L., 2005. Spatial and temporal analysis of water chemistry records (1958–2000) in the Huanghe (Yellow River) basin. Global biogeochemical cycles 19. https://doi.org/10.1029/2004GB002325.
- Daskalakis, K.D., O'Connor, T.P., 1995. Distribution of chemical concentrations in US coastal and estuaine sediment. Mar. Environ. Res. 40, 381–398. https://doi.org/10.1016/0141-1136(94)00150-N.
- Engraff, M., Solere, C., Smith, K.E.C., Mayer, P., Dahllöf, I., 2011. Aquatic toxicity of PAHs and PAH mixtures at saturation to benthic amphipods: linking toxic effects to chemical activity. Aquat. Toxicol. 102, 142–149. https://doi.org/10.1016/j.aquatox. 2011.01.009
- EPA, U.S., 2010. Nonylphenol (NP) and Nonylphenol Ethoxylates (NPEs) Action Plan. United States Environmental Protection Agency, Washington, D.C. https://www.e-pa.gov/sites/production/files/2015-09/documents/rin2070-za09\_np-npes\_action\_plan final 2010-08-09.pdf.
- Gao, X., Yang, Y., Wang, C., 2012. Geochemistry of organic carbon and nitrogen in surface sediments of coastal Bohai Bay inferred from their ratios and stable isotopic signatures. Mar. Pollut. Bull. 64, 1148–1155. https://doi.org/10.1016/j.marpolbul. 2012.03.028.
- Ghosh, P., Gupta, A., Thakur, I.S., 2015. Combined chemical and toxicological evaluation of leachate from municipal solid waste landfill sites of Delhi. India. Environ. Sci. Pollut. Res. 22, 9148–9158. https://doi.org/10.1007/s11356-015-4077-7.
- Giesy, J.P., Snyder, E.M., 1998. Xenobiotic modulation of endocrine function in fishes. In: Kendall, R., Dickerson, R., Giesy, J.P., Sulk, W. (Eds.), Principles and Processes for Evaluating Endocrine Disruption in Wildlife. SETAC Press, Pensacola, pp. 155–237. https://doi.org/10.1002/etc.5620150801.
- Gschwend, P.M., Hites, R.A., 1981. Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochim. Cosmochim. Ac. 45, 2359–2367. https://doi.org/10.1016/0016-7037(81)90089-2.
- Guzzella, L., Salerno, F., Freppaz, M., Roscioli, C., Pisanello, F., Poma, G., 2016. POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): longrange atmospheric transport, glacier shrinkage, or local impact of tourism? Sci. Total Environ. 544, 382–390. https://doi.org/10.1016/j.scitotenv.2015.11.118.
- Harrison, R.M., Smith, D., Luhana, L., 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ. Sci. Technol. 30, 825–832. https://doi.org/10.1021/es950252d.
- Hoagland, P., Jin, D., 2006. Accounting for Economic Activities on Large Marine Ecosystems and Regional Seas. NOAA's Large Marine Ecosystems (LMEs) and UNEP Regional Seas Programme. https://wedocs.unep.org/bitstream/handle/20.500. 11822/11814/rsrs181.pdf?sequence=1&amp%3BisAllowed=.
- Hong, S., Lee, Y., Yoon, S.J., Lee, J., Kang, S., Won, E.-J., Hur, J., Khim, J.S., Shin, K.-H., 2019. Carbon and nitrogen stable isotope signatures linked to anthropogenic toxic substances pollution in a highly industrialized area of South Korea. Mar. Pollut. Bull. 144, 152–159. https://doi.org/10.1016/j.marpolbul.2019.05.006.
- Hong, S., Lee, J., Lee, C., Yoon, S.J., Jeon, S., Kwon, B.-O., Lee, J.-H., Giesy, J.P., Khim, J.S., 2016. Are styrene oligomers in coastal sediments of an industrial area aryl hydrocarbon-receptor agonists? Environ. Pollut. 213, 913–921. https://doi.org/10.1016/j.envpol.2016.03.025.
- Hong, S., Khim, J.S., Ryu, J., Park, J., Song, S.J., Kwon, B.-O., Choi, K., Ji, K., Seo, J., Lee, S., 2012a. Two years after the *Hebei Spirit* oil spill: residual crude-derived hydrocarbons and potential AhR-mediated activities in coastal sediments. Environ. Sci. Technol. 46, 1406–1414. https://doi.org/10.1021/es203491b.
- Hong, S., Khim, J.S., Naile, J.E., Park, J., Kwon, B.-O., Wang, T., Lu, Y., Shim, W.J., Jones, P.D., Giesy, J.P., 2012b. AhR-mediated potency of sediments and soils in estuarine and coastal areas of the Yellow Sea region: a comparison between Korea and China. Environ. Pollut. 171, 216–225. https://doi.org/10.1016/j.envpol.2012.08.001.
- Jeon, S., Hong, S., Kwon, B.-O., Park, J., Song, S.J., Giesy, J.P., Khim, J.S., 2017. Assessment of potential biological activities and distributions of endocrine-disrupting chemicals in sediments of the west coast of South Korea. Chemosphere 168, 441–449. https://doi.org/10.1016/j.chemosphere.2016.10.089.
- Jiao, W., Wang, T., Khim, J.S., Luo, W., Hu, W., Naile, J.E., Giesy, J.P., Lu, Y., 2012. PAHs in surface sediments from coastal and estuarine areas of the northern Bohai and Yellow Seas, China. Environ. Geochem. Health 34, 445–456. https://doi.org/10. 1007/s10653-011-9445-8.
- Kang, S., Kim, J.-H., Kim, D., Song, H., Ryu, J.-S., Ock, G., Shin, K.-H., 2019. Temporal variation in riverine organic carbon concentrations and fluxes in two contrasting estuary systems: Geum and Seomjin, South Korea. Environ. Int. 133, 105126. https:// doi.org/10.1016/j.envint.2019.105126.
- Karstens, S., Buczko, U., Jurasinski, G., Peticzka, R., Glatzel, S., 2016. Impact of adjacent land use on coastal wetland sediments. Sci. Total Environ. 550, 337–348. https://doi. org/10.1016/j.scitotenv.2016.01.079.
- Khalili, N.R., Scheff, P.A., Holsen, T.M., 1995. PAH source fingerprints for coke ovens,

- diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 29, 533–542. https://doi.org/10.1016/1352-2310(94)00275-P.
- Khim, J.S., Park, J., Song, S.J., Yoon, S.J., Noh, J., Hong, S., Kwon, B.-O., Ryu, J., Zhang, X., Wang, T., 2018a. Chemical-, site-, and taxa-dependent benthic community health in coastal areas of the Bohai Sea and northern Yellow Sea: a sediment quality triad approach. Sci. Total Environ. 645, 743–752. https://doi.org/10.1016/j.scitotenv. 2018.07.169
- Khim, J.S., Hong, S., Yoon, S.J., Nam, J., Ryu, J., Kang, S.-G., 2018b. A comparative review and analysis of tentative ecological quality objectives (EcoQOs) for protection of marine environments in Korea and China. Environ. Pollut. 242, 2027–2039. https://doi.org/10.1016/j.envpol.2018.06.094.
- Khim, J.S., Villeneuve, D.L., Kannan, K., Lee, K.T., Snyder, S.A., Koh, C.H., Giesy, J.P., 1999. Alkylphenols, polycyclic aromatic hydrocarbons, and organochlorines in sediment from Lake Shihwa, Korea: instrumental and bioanalytical characterization. Environ. Toxicol. Chem. 18, 2424–2432. https://doi.org/10.1002/etc.5620181107
- Kimbrough, K.L., Dickhut, R.M., 2006. Assessment of polycyclic aromatic hydrocarbon input to urban wetlands in relation to adjacent land use. Mar. Pollut. Bull. 52, 1355–1363. https://doi.org/10.1016/j.marpolbul.2006.03.022.
- KOSIS, 2018. Statistical database-Population, Households and Housing units. Korean Statistical Information Service. http://kosis.kr/eng/statisticsList/statisticsListIndex.do?menuId=M\_01\_01&vwcd=MT\_ETITLE&parmTabId=M\_01\_01#SelectStatsBoxDiv.
- Kwon, B.G., Koizumi, K., Chung, S.-Y., Kodera, Y., Kim, J.-O., Saido, K., 2015. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution. J. Hazard. Mater. 300, 359–367. https://doi.org/10.1016/j jhazmat.2015.07.039.
- Kwon, B.G., Saido, K., Koizumi, K., Sato, H., Ogawa, N., Chung, S.-Y., Kusui, T., Kodera, Y., Kogure, K., 2014. Regional distribution of styrene analogues generated from polystyrene degradation along the coastlines of the North-East Pacific Ocean and Hawaii. Environ. Pollut. 188, 45–49. https://doi.org/10.1016/j.envpol.2014.01.019.
- Kwon, H.-O., Choi, S.-D., 2014. Polycyclic aromatic hydrocarbons (PAHs) in soils from a multi-industrial city. South Korea. Sci. Total Environ. 470, 1494–1501. https://doi. org/10.1016/j.scitotenv.2013.08.031.
- Larsen, R.K., Baker, J.E., 2003. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ. Sci. Technol. 37, 1873–1881. https://doi.org/10.1021/es0206184.
- Lee, J., Hong, S., Kwon, B.-O., Cha, S.A., Jeong, H.-D., Chang, W.K., Ryu, J., Giesy, J.P., Khim, J.S., 2018. Integrated assessment of persistent toxic substances in sediments from Masan Bay, South Korea: comparison between 1998 and 2014. Environ. Pollut. 238, 317–325. https://doi.org/10.1016/j.envpol.2018.02.064.
- Lee, J., Hong, S., Yoon, S.J., Kwon, B.-O., Ryu, J., Giesy, J.P., Allam, A.A., Al-Khedhairy, A.A., Khim, J.S., 2017a. Long-term changes in distributions of dioxin-like and estrogenic compounds in sediments of Lake Sihwa, Korea: revisited mass balance. Chemosphere 181, 767–777. https://doi.org/10.1016/j.chemosphere.2017.04.074.
- Lee, Y., Hong, S., Kim, M.-S., Kim, D., Choi, B.-H., Hur, J., Khim, J.S., Shin, K.-H., 2017b. Identification of sources and seasonal variability of organic matter in Lake Sihwa and surrounding inland creeks, South Korea. Chemosphere 177, 109–119. https://doi.org/10.1016/j.chemosphere.2017.02.148
- Lehmann, M.F., Bernasconi, S.M., Barbieri, A., McKenzie, J.A., 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Ac 66, 3573–3584. https://doi.org/10.1016/S0016-7037(02)00968-7.
- Li, Y., Duan, X., Li, X., Zhang, D., 2013. Photodegradation of nonylphenol by simulated sunlight. Mar. Pollut. Bull. 66, 47–52. https://doi.org/10.1016/j.marpolbul.2012.11.
- Li, Y., Zhu, X., Sun, X., Wang, F., 2010. Landscape effects of environmental impact on bayarea wetlands under rapid urban expansion and development policy: a case study of Lianyungang, China. Landsc. Urban Plan. 94, 218–227. https://doi.org/10.1016/j.landurbplan.2009.10.006.
- Lin, D., Zhu, L., 2004. Polycyclic aromatic hydrocarbons: pollution and source analysis of a black tea. J. Agric. Food Chem. 52, 8268–8271. https://doi.org/10.1021/ i6049265.
- Liu, A., Duodu, G.O., Mummullage, S., Ayoko, G.A., Goonetilleke, A., 2017. Hierarchy of factors which influence polycyclic aromatic hydrocarbons (PAHs) distribution in river sediments. Environ. Pollut. 223, 81–89. https://doi.org/10.1016/j.envpol.2016. 12.024
- Liu, Y., Beckingham, B., Ruegner, H., Li, Z., Ma, L., Schwientek, M., Xie, H., Zhao, J., Grathwohl, P., 2013. Comparison of sedimentary PAHs in the rivers of Ammer (Germany) and Liangtan (China): differences between early-and newly-industrialized countries. Environ. Sci. Technol. 47, 701–709. https://doi.org/10.1021/es3031566.
- Long, E.R., Macdonald, D.D., Smith, S.L., Calder, F.D., 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19, 81–97. https://doi.org/10.1007/BF02472006.
- Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C., 2014. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065.
- Ma, M., Feng, Z., Guan, C., Ma, Y., Xu, H., Li, H., 2001. DDT, PAH and PCB in sediments from the intertidal zone of the Bohai Sea and the Yellow Sea. Mar. Pollut. Bull. 42, 132–136. https://doi.org/10.1016/S0025-326X(00)00118-1.
- McGrath, T., Sharma, R., Hajaligol, M., 2001. An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel 80, 1787–1797. https://doi.org/10.1016/S0016-2361(01)00062-X.
- Meng, J., Hong, S., Wang, T., Li, Q., Yoon, S.J., Lu, Y., Giesy, J.P., Khim, J.S., 2017. Traditional and new POPs in environments along the Bohai and Yellow Seas: an overview of China and South Korea. Chemosphere 169, 503–515. https://doi.org/10.

- 1016/j.chemosphere.2016.11.108.
- Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289–302. https://doi.org/10.1016/0009-2541(94)90059-0.
- MOE, 2009. The National Implementation Plan of the Republic of Korea under the Stockholm Convention on Persistent Organic Pollutants. Ministry of Environment. https://www.informea.org/en/action-plan/national-implementation-plan-republic-korea-under-stockholm-convention-persistent.
- Moon, H.-B., Kannan, K., Lee, S.-J., Ok, G., 2006. Atmospheric deposition of polycyclic aromatic hydrocarbons in an urban and a suburban area of Korea from 2002 to 2004. Arch. Environ. Contam. Toxicol. 51, 494–502. https://doi.org/10.1007/s00244-006-0002-x.
- National Bureau of Statistics, 2018. New statistical yearbooks published by China statistics press, Population, Population at year-end by region. http://www.stats.gov.cn/tisi/ndsi/2018/indexeh.htm.
- NOAA, National Status and Trends Program, 1991. Second Summary of Data on chemical contaminants in sediment from the national status and trends program. National Oceanic and Atmospheric Administration. NOAA Tech. Memo. NOS ORCA (Formerly OMA) 59, NOAA Office of Oceanography and Marine Assessment, Rockville, MD. https://repository.library.noaa.gov/view/noaa/2865.
- Norris, G., Duvall, R., Brown, S., Bai, S., 2014. EPA Positive Matrix Factorization (PMF) 5. 0 Fundamentals and User Guide Prepared for the U.S. Environmental Protection Agency Office of Research and Development, Washington, DC, EPA/600/R-14/108 (NTIS PB2015-105147) https://cfpub.epa.gov/si/si\_public\_record\_report. cfm?dirEntryId=308292&Lab=NERL.
- Ohyama, K., Nagai, F., Tsuchiya, Y., 2001. Certain styrene oligomers have proliferative activity on MCF-7 human breast tumor cells and binding affinity for human estrogen receptor. Environ. Health Perspect. 109, 699–703. https://doi.org/10.1289/ehp.
- Peters, K., Sweeney, R., Kaplan, I., 1978. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter 1. Limnol. Oceanogr. 23, 598–604. https://doi.org/10.4319/lo.1978.23.4.0598.
- Ravindra, K., Sokhi, R., Van Grieken, R., 2008. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos. Environ. 42, 2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010.
- Rice, D.L., Tenore, K.R., 1981. Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes. Estuarine, Coastal and Shelf Science 13, 681–690. https://doi.org/10.1016/S0302-3524(81)80049-7.
- Saxena, G., Marzinelli, E.M., Naing, N.N., He, Z.L., Liang, Y.T., Tom, L., Mitra, S., Ping, H., Joshi, U.M., Reuben, S., Mynampati, K.C., Mishra, S., Umashankar, S., Zhou, J.Z., Andersen, G.L., Kjelleberg, S., Swarup, S., 2015. Ecogenomics reveals metals and land-use pressures on microbial communities in the waterways of a megacity. Environ. Sci. Technol. 49, 1462–1471. https://doi.org/10.1021/es504531s.
- Schubert, C.J., Calvert, S.E., 2001. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 48, 789–810. https://doi.org/10.1016/S0967-0637(00)00069-8.
- Shi, H., Wang, X., Xu, M., Zhang, H., Luo, Y., 2017. Characteristics of soil C: N ratio and δ 13 C in wheat-maize cropping system of the North China Plain and influences of the Yellow River. Scientific reports 7, 16854. https://doi.org/10.1038/s41598-017-17060-3.
- Simcik, M.F., Eisenreich, S.J., Lioy, P.J., 1999. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 33, 5071–5079. https://doi.org/10.1016/S1352-2310(99)00233-2.
- Solberg, T., Tiefenthaler Jr, J., O'Brien, G., Behnke, H., Poulson, H., Ela, J., Willett, S., 2003. Consensus-Based Sediment Quality Guidelines. Recommendations for Use & Application Interim Guidance. Developed by the Contaminated Sediment Standing Team, Wisconsin Department of Natural Resources. https://dnr.wi.gov/files/PDF/ pubs/rr/RR088.pdf.
- Stout, S.A., Graan, T.P., 2010. Quantitative source apportionment of PAHs in sediments of Little Menomonee River, Wisconsin: weathered creosote versus urban background. Environ. Sci. Technol. 44, 2932–2939. https://doi.org/10.1021/es903353z.
- Szczepańska, A., Zaborska, A., Maciejewska, A., Kuliński, K., Pempkowiak, J., 2012. Distribution and origin of organic matter in the Baltic Sea sediments dated with 210Pb and 137Cs. Geochronometria 39, 1–9. https://doi.org/10.2487/s13386-011-0058-x.
- Tatarazako, N., Takao, Y., Kishi, K., Onikura, N., Arizono, K., Iguchi, T., 2002. Styrene dimers and trimers affect reproduction of daphnid (Ceriodaphnia dubia). Chemosphere 48, 597–601. https://doi.org/10.1016/S0045-6535(02)00119-4.
- Thornton, S., McManus, J., 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 38, 219–233. https://doi.org/10.1006/ecss.1994.1015.
- Tobiszewski, M., Namiesnik, J., 2012. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 162, 110–119. https://doi.org/10.1016/ j.envpol.2011.10.025.
- Wang, L., Ying, G.-G., Zhao, J.-L., Liu, S., Yang, B., Zhou, L.-J., Tao, R., Su, H.-C., 2011. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environ. Pollut. 159, 148–156. https://doi.org/10.1016/j.envpol.2010.09.017.
- Wang, R.M., Tang, J.H., Xie, Z.Y., Mi, W.Y., Chen, Y.J., Wolschke, H., Tian, C.G., Pan, X.H., Luo, Y.M., Ebinghaus, R., 2015. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea, north China. Environ. Pollut. 198, 172–178. https://doi.org/10.1016/j.envpol.2014.12.037.
- White, R., Jobling, S., Hoare, S., Sumpter, J., Parker, M., 1994. Environmentally

- persistent alkylphenolic compounds are estrogenic. Endocrinology 135, 175–182. https://doi.org/10.1210/endo.135.1.8013351.
- Wu, Y., Zhang, J., Liu, S.M., Zhang, Z.F., Yao, Q.Z., Hong, G.H., Cooper, L., 2007. Sources and distribution of carbon within the Yangtze River system. Estuar. Coast. Shelf Sci. 71, 13–25. https://doi.org/10.1016/j.ecss.2006.08.016.
- Yoon, S.-H., Kim, J.-H., Yi, H.-I., Yamamoto, M., Gal, J.-K., Kang, S., Shin, K.-H., 2016. Source, composition and reactivity of sedimentary organic carbon in the riverdominated marginal seas: a study of the eastern Yellow Sea (the northwestern Pacific). Continental Shelf Research 125, 114–126. https://doi.org/10.1016/j.csr. 2016.07.010.
- Yoon, S.J., Hong, S., Kim, T., Lee, J., Kwon, B.-O., Allam, A.A., Al-khedhairy, A.A., Khim, J.S., 2019. Occurrence and bioaccumulation of persistent toxic substances in sediments and biota from intertidal zone of Abu Ali Island, Arabian Gulf. Mar. Pollut. Bull. 144, 243–252. https://doi.org/10.1016/j.marpolbul.2019.05.008.
- Yoon, S.J., Hong, S., Kwon, B.-O., Ryu, J., Lee, C.-H., Nam, J., Khim, J.S., 2017. Distributions of persistent organic contaminants in sediments and their potential impact on macrobenthic faunal community of the Geum River estuary and Saemangeum coast, Korea. Chemosphere 173, 216–226. https://doi.org/10.1016/j. chemosphere.2017.01.031.
- Zhang, T., Yang, W.-L., Chen, S.-J., Shi, D.-L., Zhao, H., Ding, Y., Huang, Y.-R., Li, N., Ren, Y., Mai, B.-X., 2014. Occurrence, sources, and ecological risks of PBDEs, PCBs, OCPs, and PAHs in surface sediments of the Yangtze River Delta city cluster. China. Environ. Monit. Assess. 186, 5285–5295. https://doi.org/10.1007/s10661-014-3777-7.
- Zhen, X., Tang, J., Xie, Z., Wang, R., Huang, G., Zheng, Q., Zhang, K., Sun, Y., Tian, C., Pan, X., 2016. Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) in sediments from four bays of the Yellow Sea, North China. Environ. Pollut. 213, 386–394. https://doi.org/10.1016/j.envpol.2016.02.042.

# Large-scale monitoring and ecological risk assessment of persistent toxic substances in riverine, estuarine, and coastal sediments of the Yellow and Bohai seas

Seo Joon Yoon, Seongjin Hong, Seonju Kim, Jongmin Lee, Taewoo Kim, Beomgi Kim, Bong-Oh Kwon, Yunqiao Zhou, Bin Shi, Peng Liu, Wenyou Hu, Biao Huang, Tieyu Wang\*, and Jong Seong Khim\*

# Table of Contents

# **Supplementary Tables**

| <b>Table S1.</b> Top 20 LMEs in Marine Industry Activity Index (Hoagland and Jin, 2006) S3 <b>Table S2.</b> Information on sampling stations and conditions by each team S4                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Table S3.</b> Instrumental conditions of gas chromatograph equipped with a mass selective detector                                                                                                                                                                         |
| for analyses of persistent toxic substances                                                                                                                                                                                                                                   |
| <b>Table S4.</b> Certified and measured concentrations for selected PAHs in standard reference material                                                                                                                                                                       |
| (SRM) 1944 to check the accuracy of the method. · · · · · S10                                                                                                                                                                                                                 |
| <b>Table S5.</b> Concentrations of PAHs in sediments of the Yellow and Bohai seas S11                                                                                                                                                                                         |
| Table S6. Concentrations of APs and SOs in sediments of the Yellow and Bohai seas. · · · S15                                                                                                                                                                                  |
| Table S7. Fractional condition to identified sources (%) from base run using positive matrix                                                                                                                                                                                  |
| factorization receptor model                                                                                                                                                                                                                                                  |
| Table S8. Statistical relationships of landuse type on persistent toxic substances (PTSs), for all                                                                                                                                                                            |
| PTS categories and by region. The bold text highlights statistically significant                                                                                                                                                                                              |
| relationships S19                                                                                                                                                                                                                                                             |
| <b>Table S9.</b> Statistical relationships of regional differences, by land use type. The bold text highlights statistically significant relationships                                                                                                                        |
| <b>Table S10.</b> Statistical relationships (Spearman rank) of regional differences between PTSs and physicochemical parameters in sediments, by land use type and region for the Yellow and Bohai seas. The bold text highlights statistically significant relationships S21 |
| Supplementary Figures                                                                                                                                                                                                                                                         |
| <b>Fig. S1.</b> (a) Spatial distributions of $\delta^{13}$ C values and (b) C/N ratios in the sediments of Yellow and Bohai seas                                                                                                                                              |
| Fig. S2. Relationships among PTSs. Panels: (left) Principal Component Analysis (PCA) ordination                                                                                                                                                                               |

|                 | of PTSs and physicochemical parameters and (right) the relationship between PTSs and       |
|-----------------|--------------------------------------------------------------------------------------------|
|                 | TOC or $\delta^{13}$ C. S23                                                                |
| Fig. S3.        | Composition of PTSs among concentration groups, by concentration (20% interval of          |
|                 | concentrations) and region                                                                 |
| Fig. S4.        | Diagnostic ratios for prediction of PAHs sources between Ant/(Ant+Phe) and Fl/(Fl+Py), and |
|                 | BaA/(BaA+Chr) and IcdP/(IcdP+BghiP)                                                        |
| <b>Fig. S5.</b> | Compositions of 16 PAHs in 2008 and 2018 in sediments of the Yellow and Bohai seas.        |
|                 |                                                                                            |
|                 |                                                                                            |

*E-mail addresses*: wangtieyu@163.com (T. Wang); jskocean@snu.ac.kr (J.S. Khim).

 $<sup>*</sup> Corresponding \ Authors.\\$ 

# **Supplementary Tables**

**Table S1.** Top 20 LMEs in Marine Industry Activity Index (Hoagland and Jin, 2006).

| LME                              | LME# | Socioeconomic<br>Index | Fishery & Aquaculture<br>Index | Tourism<br>Index | Ship & Oil<br>Index | Marine Industry Activity Index |
|----------------------------------|------|------------------------|--------------------------------|------------------|---------------------|--------------------------------|
| Yellow Sea                       | 48   | 73.4                   | 71.8                           | 44.4             | 36.9                | 45.4                           |
| East China Sea                   | 47   | 84.1                   | 51.9                           | 30.8             | 42.1                | 41.8                           |
| East Bering Sea                  | 1    | 93.9                   | 17.4                           | 57.9             | 44.0                | 41.4                           |
| Insular Pacific-Hawaiian         | 10   | 93.9                   | 17.4                           | 57.9             | 44.0                | 41.4                           |
| Northeast U.S. Continental Shelf | 7    | 94.0                   | 15.5                           | 52.8             | 37.9                | 36.4                           |
| Gulf of Mexico                   | 5    | 89.1                   | 13.0                           | 46.3             | 36.6                | 33.8                           |
| Kuroshio Current                 | 49   | 93.6                   | 18.3                           | 6.7              | 45.8                | 32.5                           |
| California Current               | 3    | 88.0                   | 12.1                           | 43.7             | 35.0                | 32.2                           |
| Gulf of Alaska                   | 2    | 94.0                   | 13.7                           | 48.2             | 32.5                | 31.9                           |
| Southeast U.S. Continental Shelf | 6    | 90.8                   | 13.1                           | 44.0             | 33.1                | 31.3                           |
| Chukchi Sea                      | 54   | 87.4                   | 14.7                           | 34.9             | 27.5                | 26.4                           |
| South China Sea                  | 36   | 73.8                   | 34.5                           | 22.3             | 14.9                | 20.3                           |
| Beaufort Sea                     | 55   | 94.2                   | 9.2                            | 36.5             | 18.6                | 20.3                           |
| Gulf of California               | 4    | 80.2                   | 4.9                            | 24.9             | 23.1                | 19.8                           |
| Norwegian Shelf                  | 21   | 95.6                   | 10.7                           | 3.7              | 28.0                | 19.7                           |
| Sea of Japan                     | 50   | 83.3                   | 13.3                           | 3.5              | 24.0                | 17.7                           |
| Celtic-Biscay Shelf              | 24   | 92.2                   | 2.5                            | 38.8             | 14.6                | 17.0                           |
| North Sea                        | 22   | 94.0                   | 5.3                            | 14.4             | 16.4                | 13.8                           |
| Oyashio Current                  | 51   | 83.3                   | 13.0                           | 2.1              | 14.9                | 12.0                           |
| Iberian Coastal                  | 25   | 91.2                   | 2.5                            | 47.3             | 3.2                 | 11.9                           |

Hoagland, P., Jin, D., 2006. Accounting for Economic Activities on Large Marine Ecosystems and Regional Seas. NOAA's Large Marine Ecosystems (LMEs) and UNEP Regional Seas Programme.

https://wedocs.unep.org/bitstream/handle/20.500.11822/11814/rsrs181.pdf?sequence=1&amp%3BisAllowed=

**Table S2.** Information on sampling stations and conditions by each team.

| Map of sampling locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date (yyyymmdd) | Site | Latitude (°N) | Longitude (°E) | Land use type | Temperature (°C) | Salinity (‰) | DO<br>(mg L <sup>-1</sup> ) | pН   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|---------------|----------------|---------------|------------------|--------------|-----------------------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Team 1          |      |               |                |               |                  |              |                             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180701        | DL4  | 38.9844       | 121.5103       | Beach         | 26.1             | 1.2*         | 9.09                        | 7.82 |
| A STATE OF THE STA | 20180701        | DL6  | 39.5058       | 121.4033       | Unused land   | 26.4             | 35.5         | 8.03                        | 7.89 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180701        | DL1  | 39.6208       | 121.5214       | Industrial    | 25.4             | 34.9         | 7.51                        | 7.93 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180701        | DL2  | 39.6947       | 121.740.       | Industrial    | 27.9             | 0.76         | 9.83                        | 8.59 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180702        | DL5  | 39.4817       | 122.5592       | Municipal     | 24.5             | 34.6         | 7.35                        | 7.84 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180702        | DL3  | 39.6633       | 122.9939       | Municipal     | 26.2             | 31.8         | 6.09                        | 7.69 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180702        | DD4  | 39.8383       | 123.6528       | Agricultural  | 25.0             | 9.9*         | 6.62                        | 8.36 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180703        | DD3  | 40.3122       | 124.6968       | Agricultural  | 25.0             | 0.24         | 9.52                        | 8.32 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180703        | DD1  | 40.1771       | 124.4567       | Industrial    | 22.5             | 0.15         | 8.90                        | 8.12 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180703        | DD2  | 39.9436       | 124.2828       | Unused land   | 25.1             | 0.40*        | 5.61                        | 7.97 |
| SASSA S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20180704        | YK3  | 40.425        | 122.2844       | Industrial    | 27.9             | 38.5         | 4.81                        | 7.82 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180704        | YK2  | 40.69         | 122.1292       | Industrial    | 29.1             | 35.3         | 7.20                        | 8.30 |
| 100 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20180704        | YK1  | 40.9963       | 122.4638       | Municipal     | 30.4             | 0.64         | 13.8                        | 8.84 |
| 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20180704        | PJ2  | 41.0238       | 122.4338       | Municipal     | 29.5             | 0.81         | 4.77                        | 8.11 |
| JZ2 JZ5 PJ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20180705        | JZ5  | 40.9092       | 121.8192       | Industrial    | 29.0             | 36.5         | 7.41                        | 7.96 |
| JZ1 PJ1 YK2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20180705        | PJ1  | 40.8822       | 121.5714       | Agricultural  | 31.8             | 0.50*        | 10.3                        | 8.54 |
| YK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20180705        | JZ3  | 41.4531       | 121.4594       | Unused land   | 27.1             | 0.71         | 8.46                        | 8.30 |
| DD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20180705        | JZ4  | 41.1763       | 121.3792       | Industrial    | 28.1             | 0.76         | 9.36                        | 8.25 |
| DD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20180706        | JZ2  | 40.9181       | 121.2436       | Agricultural  | 27.8             | 39.2         | 7.59                        | 7.68 |
| DL1 DL3 DD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20180706        | JZ1  | 40.9242       | 121.1867       | Agricultural  | 28.1             | 37.5         | 8.60                        | 8.95 |
| DL5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20180706        | HL4  | 40.7469       | 120.9347       | Industrial    | 30.6             | 9.1          | 11.1                        | 7.14 |
| DL6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20180706        | HL5  | 40.5919       | 120.7694       | Agricultural  | 28.3             | 7.5          | 7.44                        | 8.94 |
| DL4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20180707        | HL3  | 40.3703       | 120.2583       | Agricultural  | 25.3             | 0.43         | 8.07                        | 7.77 |
| 50 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20180707        | HL6  | 40.4181       | 120.2992       | Unused land   | 26.7             | 0.54         | 2.99                        | 7.20 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180707        | HL1  | 40.2697       | 120.4622       | Municipal     | 26.2             | 33.7         | 8.73                        | 8.00 |

**Table S2.** (Continued)

| Sampling map        | Date     | Site | Latitude (°N) | Longitude (°E) | Land use type | Temperature (°C) | Salinity (‰) | DO<br>(mg L <sup>-1</sup> ) | рН   |
|---------------------|----------|------|---------------|----------------|---------------|------------------|--------------|-----------------------------|------|
| HL4                 | 20180707 | HL2  | 40.1747       | 120.2614       | Agricultural  | 28.7             | 0.2          | 10.8                        | 9.51 |
| HL6                 | 20180708 | QH7  | 39.9653       | 119.7694       | Municipal     | 23.8             | 22.5         | 9.18                        | 8.63 |
| HL3                 | 20180708 | QH6  | 39.9203       | 119.5667       | Municipal     | 24.8             | 0.4*         | 6.28                        | 8.47 |
| QH5 QH6 QH7 HL2 HL1 | 20180708 | QH5  | 39.9802       | 119.2126       | Municipal     | 25.8             | 0.4          | 9.88                        | 8.81 |
| TS7 QH4 QH3         | 20180709 | QH3  | 39.8394       | 119.5133       | Municipal     | 25.0             | 0.5          | 5.36                        | 7.23 |
| TS6 QH1             | 20180709 | QH4  | 39.8017       | 119.4419       | Municipal     | 26.2             | 0.3*         | 3.80                        | 8.07 |
| TS2 TS5             | 20180709 | QH2  | 39.7814       | 119.4136       | Unused land   | 25.6             | 8.1          | 7.97                        | 7.95 |
| TS3                 | 20180709 | QH1  | 39.6789       | 119.2911       | Municipal     | 25.2             | 24.2         | 6.79                        | 7.93 |
|                     | 20180710 | TS7  | 39.6641       | 118.7881       | Agricultural  | 26.6             | 0.59         | 5.87                        | 0.59 |
| 50 km               | 20180710 | TS6  | 39.4607       | 119.1341       | Agricultural  | 27.0             | 0.73         | 9.40                        | 8.09 |
| OU KIII             | 20180710 | TS5  | 39.4308       | 119.28         | Agricultural  | 28.4             | 35.3         | 8.37                        | 7.75 |
|                     | 20180710 | TS2  | 39.1522       | 118.5342       | Industrial    | 27.7             | 37.3         | 6.35                        | 7.82 |
|                     | 20180710 | TS3  | 39.0436       | 118.3642       | Municipal     | 25.6             | 38.0         | 7.54                        | 7.90 |
|                     | Team 2   |      |               |                |               |                  |              |                             |      |
|                     | 20180627 | RZ1  | 35.298        | 119.4482       | Aquaculture   | 31.3             | 13.8         | 4.9                         | 7.7  |
|                     | 20180627 | RZ2  | 35.0782       | 119.3033       | Aquaculture   | 27.2             | 24.3         | 4.5                         | 8.0  |
|                     | 20180628 | QD4  | 36.2353       | 120.1206       | Municipal     | 27.4             | 18.6         | 7.1                         | 8.0  |
|                     | 20180628 | QD5  | 35.8568       | 120.0477       | Beach         | 27.4             | 21.2         | 13.6                        | 8.5  |
|                     | 20180628 | QD6  | 35.7684       | 119.9262       | Aquaculture   | 30.1             | 4.4          | 7.1                         | 8.1  |
|                     | 20180628 | QD7  | 35.7405       | 119.9111       | Aquaculture   | 29.0             | 14.2         | 3.8                         | 7.7  |
|                     | 20180629 | QD2  | 36.7802       | 120.4099       | Unused land   | 29.9             | 0.5          | 16.7                        | 10.4 |
|                     | 20180629 | QD3  | 36.6637       | 120.295        | Agricultural  | 30.0             | 0.3          | 12.0                        | 9.3  |
|                     | 20180630 | QD1  | 36.2609       | 120.3259       | Municipal     | 31.7             | 18.5         | 3.83                        | 7.76 |
| 2 10                | 20180701 | WH1  | 36.8266       | 121.4636       | Aquaculture   | 28.7             | 19.9         | 8.0                         | 7.9  |
| 100 km              | 20180701 | WH3  | 36.9321       | 121.8657       | Unused land   | 27.6             | 20.9         | 9.8                         | 8.3  |
| TOO KIN             | 20180701 | YT5  | 36.6543       | 120.7688       | Agricultural  | 26.3             | 1.8          | 11.6                        | 9.0  |
|                     | 20180702 | WH2  | 37.4296       | 122.2754       | Beach         | 22.4             | 26.9         | 9.2                         | 8.2  |
|                     | 20180702 | YT4  | 37.7493       | 120.5242       | Beach         | 26.1             | 27.8         | 8.6                         | 8.4  |
|                     | 20180702 | YT6  | 37.5753       | 121.2966       | Beach         | 25.8             | 28.0         | 9.8                         | 8.3  |

Table S2. (Continued)

| Sampling map            | Date     | Site | Latitude<br>(°N) | Longitude (°E) | Land use type | Temperature (°C) | Salinity (‰) | DO<br>(mg L <sup>-1</sup> ) | рН  |
|-------------------------|----------|------|------------------|----------------|---------------|------------------|--------------|-----------------------------|-----|
| TJ1 TS1                 | 20180703 | YT1  | 37.1286          | 119.7277       | Saltern       | 30.4             | 28.2         | 8.5                         | 8.2 |
| TJ3<br>TJ4 TJ5          | 20180703 | YT2  | 37.4017          | 119.9493       | Industrial    | 29.5             | 27.4         | 9.4                         | 8.4 |
| TJ6                     | 20180703 | YT3  | 37.5518          | 120.2482       | Beach         | 29.5             | 17.4         | 9.1                         | 8.5 |
| BZ2 BZ3 DV2 DV4         | 20180704 | WF4  | 37.0765          | 119.4793       | Unused land   | 28.8             | 25.6         | 7.6                         | 8.2 |
| BZ4 YT3 YT6 WH2         | 20180704 | WF5  | 36.5802          | 119.3846       | Agricultural  | 31.2             | 0.8          | 18.1                        | 9.2 |
| DY2 YT2                 | 20180704 | WF6  | 36.7421          | 119.5374       | Agricultural  | 26.1             | 1.7          | 0.3                         | 7.4 |
| DY5 WF8 WF3 WF4 QD2 WH1 | 20180704 | WF7  | 37.0921          | 119.5599       | Unused land   | 29.0             | 33.7         | 21.8                        | 3.7 |
| WF5 QD3 Y15             | 20180705 | WF1  | 37.2751          | 118.9848       | Unused land   | 30.0             | 5.2          | 4.8                         | 7.9 |
| QD4 QD1                 | 20180705 | WF2  | 37.1354          | 119.2870       | Saltern       | 29.8             | 23.5         | 8.9                         | 8.2 |
| QD6200<br>QD7           | 20180705 | WF3  | 37.1401          | 119.1434       | Saltern       | 32.1             | 29.7         | 12.6                        | 8.8 |
| • RZ1                   | 20180705 | WF8  | 37.1330          | 119.1860       | Saltern       | 31.3             | 37.0         | 9.0                         | 8.5 |
| 100 km                  | 20180705 | DY5  | 38.1363          | 118.4322       | Industrial    | 30.5             | 1.6          | 9.4                         | 8.1 |
|                         | 20180706 | DY2  | 37.6046          | 118.5384       | Agricultural  | 30.1             | 0.3          | 7.6                         | 8.2 |
|                         | 20180706 | DY3  | 37.7481          | 118.8214       | Agricultural  | -                | -            | -                           | -   |
|                         | 20180706 | DY4  | 37.7615          | 119.1706       | Unused land   | 33.1             | 0.5          | 8.4                         | 8.4 |
|                         | 20180707 | DY1  | 37.4851          | 118.2691       | Agricultural  | 29.3             | 0.5          | 7.4                         | 8.5 |
|                         | 20180707 | BZ4  | 37.5010          | 117.8540       | Agricultural  | 32.2             | 0.8          | 16.3                        | 8.9 |
|                         | 20180707 | BZ5  | 37.2497          | 117.7231       | Agricultural  | 30.5             | 0.4          | 5.1                         | 8.2 |
|                         | 20180707 | BZ6  | 37.3350          | 118.0576       | Agricultural  | 29.9             | 0.3          | 7.1                         | 8.5 |
|                         | 20180708 | BZ1  | 38.2637          | 117.8511       | Agricultural  | 28.0             | 31.6         | 7.3                         | 8.3 |
|                         | 20180708 | BZ2  | 38.2006          | 118.0047       | Unused land   | 28.0             | 33.3         | 5.3                         | 7.6 |
|                         | 20180708 | BZ3  | 38.1460          | 118.0528       | Unused land   | 27.2             | 15.7         | 8.4                         | 8.4 |
|                         | 20180709 | TJ1  | 39.2000          | 117.7641       | Industrial    | -                | 2.2          | 9.4                         | 9.5 |
|                         | 20180709 | TJ2  | 39.1640          | 117.6623       | Unused land   | 26.8             | 0.7          | 10.2                        | 9.3 |
|                         | 20180709 | TJ3  | 39.0938          | 117.7298       | Unused land   | 25.8             | 22.0         | 5.8                         | 8.1 |
|                         | 20180709 | TJ5  | 38.9695          | 117.7315       | Industrial    | 26.4             | 15.7         | 7.7                         | 8.4 |
|                         | 20180710 | TJ4  | 39.0214          | 117.4955       | Agricultural  | 27.9             | 6.2          | 10.1                        | 9.0 |
|                         | 20180710 | TJ6  | 38.7667          | 117.5694       | Industrial    | 29.3             | 29.7         | 8.8                         | 8.3 |
|                         | 20180710 | TJ7  | 38.6547          | 117.5447       | Unused land   | 29.1             | 19.8         | 6.4                         | 8.2 |

Table S2. (Continued)

| Sampling map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date     | Site | Latitude<br>(°N) | Longitude (°E) | Land use type | Temperature (°C) | Salinity (‰) | DO<br>(mg L <sup>-1</sup> ) | рН  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------------------|----------------|---------------|------------------|--------------|-----------------------------|-----|
| 100 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20180710 | TS1  | 39.0203          | 117.4578       | Industrial    | 26.9             | 3.1          | 6.0                         | 8.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Team 3   |      |                  |                |               |                  |              |                             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180630 | LY2  | 34.7963          | 119.2244       | Unused land   | 25.8             | 30.7         | 7.0                         | 7.7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180701 | LY1  | 34.9023          | 119.1961       | Aquaculture   | 28.0             | 46.6         | 7.4                         | 7.8 |
| Team 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20180701 | LY3  | 34.5026          | 119.7720       | Unused land   | 28.4             | 33.7         | 7.4                         | 7.7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180701 | LY4  | 34.1537          | 118.8366       | Agricultural  | 28.0             | 0.5          | 8.1                         | 7.9 |
| Team 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20180702 | YC1  | 34.1128          | 120.3239       | Unused land   | 25.4             | 15.0         | 7.2                         | 7.8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180702 | YC3  | 33.8934          | 120.0150       | Agricultural  | 27.0             | 0.6          | 2.1                         | 7.5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180702 | YC4  | 33.4793          | 119.1460       | Municipal     | 27.1             | 0.4          | 8.1                         | 8.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180702 | YC6  | 33.3674          | 120.0770       | Industrial    | 27.4             | 0.6          | 3.7                         | 7.4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180703 | YC2  | 33.8160          | 120.4768       | Industrial    | 27.0             | 0.8*         | 2.4                         | 7.6 |
| The state of the s | 20180703 | YC5  | 33.7400          | 120.5499       | Unused land   | 28.0             | 20.2         | 7.5                         | 7.9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180703 | YC7  | 32.8821          | 120.9646       | Unused land   | 28.6             | 41.7         | 5.6                         | 7.6 |
| LY1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20180704 | YC8  | 32.6933          | 120.8959       | Unused land   | 28.5             | 4.0          | 9.4                         | 8.2 |
| LY2<br>LY3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20180704 | NT1  | 32.6031          | 120.9437       | Industrial    | 29.0             | 2.3*         | 4.7                         | 7.7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180704 | NT2  | 32.5577          | 121.0457       | Unused land   | 31.5             | 17.2         | 16.3                        | 8.6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180704 | NT3  | 32.5140          | 120.9660       | Agricultural  | 30.0             | 1.4          | 11.7                        | 8.2 |
| YC3 ● YC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20180704 | NT4  | 32.4919          | 121.2226       | Unused land   | 29.4             | 44.6         | 7.9                         | 7.9 |
| YC5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20180705 | NT5  | 32.2016          | 121.3851       | Saltern       | 28.8             | 28.1         | 5.1                         | 7.4 |
| YC4 YC6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20180705 | NT6  | 32.1535          | 121.4562       | Unused land   | 27.7             | 43.1         | 6.7                         | 7.7 |
| YC7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20180705 | NT7  | 32.1014          | 121.6039       | Unused land   | 27.5             | 44.6         | 8.2                         | 8.1 |
| YC8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20180705 | NT8  | 32.0292          | 121.7411       | Unused land   | 27.0             | 30.8         | 7.5                         | 8.0 |
| NT1 NT4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20180706 | NT9  | 31.9337          | 121.8257       | Industrial    | 26.7             | 33.3         | 4.3                         | 7.6 |
| NT3 NT5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20180706 | NT10 | 31.8490          | 121.8521       | Industrial    | 27.4             | 2.0          | 3.1                         | 7.7 |
| NT6 NT8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Team 4   |      |                  |                |               |                  |              |                             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180713 | YS1  | 34.7821          | 126.4441       | Municipal     | 28.1             | 26.7         | 7.3                         | 8.3 |
| 50 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20180713 | YS2  | 34.7866          | 126.4627       | Municipal     | 29.2             | 0.2          | 5.8                         | 9.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180713 | HP   | 35.0890          | 126.3538       | Agricultural  | 34.8             | 31.3         | 4.4                         | 7.7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20180713 | JD   | 34.9690          | 126.1662       | Agricultural  | 25.3             | 32.3         | 7.4                         | 8.2 |

**Table S2.** (Continued)

| Sampling map | Date     | Site | Latitude<br>(°N) | Longitude<br>(°E) | Land use type | Temperature (°C) | Salinity (‰) | DO<br>(mg L <sup>-1</sup> ) | рН  |
|--------------|----------|------|------------------|-------------------|---------------|------------------|--------------|-----------------------------|-----|
| LS1          | 20180714 | GS   | 35.5728          | 126.6636          | Agricultural  | 33.4             | 24.9         | 7.3                         | 7.9 |
| LS2 CLS3     | 20180714 | GG1  | 36.0225          | 126.7422          | Agricultural  | 29.3             | 0.1          | 6.7                         | 8.7 |
| AS2          | 20180714 | GG2  | 36.0085          | 126.7353          | Agricultural  | 35.7             | 12.7         | 3.7                         | 7.6 |
| SD SG2CAS1   | 20180714 | AM   | 36.5401          | 126.3265          | Beach         | 27.1             | 30.5         | 6.0                         | 7.5 |
| CS1 SG1      | 20180714 | ML   | 36.7838          | 126.1364          | Beach         | 23.1             | 31.2         | 7.5                         | 7.6 |
| AM CS2       | 20180715 | SD   | 36.8385          | 126.1834          | Beach         | 21.7             | 31.3         | 6.6                         | 7.5 |
|              | 20180715 | SG1  | 36.8788          | 126.8272          | Agricultural  | 36.6             | 0.2          | 12.0                        | 9.7 |
| GG2          | 20180715 | SG2  | 36.8951          | 126.8191          | Agricultural  | 28.5             | 27.2         | 4.4                         | 7.7 |
| GGZ GGG1     | 20180715 | AS1  | 36.8933          | 126.9123          | Agricultural  | 32.8             | 0.2          | 10.1                        | 9.1 |
| GS A A A A A | 20180715 | AS2  | 36.9154          | 126.9052          | Agricultural  | 29.5             | 24.9         | 4.2                         | 7.8 |
|              | 20180716 | DB   | 37.2142          | 126.5855          | Agricultural  | 26.4             | 22.5         | 6.3                         | 7.7 |
|              | 20180716 | LS1  | 37.3348          | 126.6895          | Industrial    | 29.3             | 22.2         | 4.6                         | 7.6 |
| HP           | 20180716 | LS2  | 37.3257          | 126.6571          | Industrial    | 27.2             | 28.6         | 6.5                         | 7.7 |
| JD YS2       | 20180716 | LS4  | 37.3249          | 126.6556          | Industrial    | 25.9             | 28.8         | 8.5                         | 8.1 |
| YS10         | 20180723 | CS1  | 36.5981          | 126.4632          | Agricultural  | 33.3             | 1.5          | 12.7                        | 9.3 |
| 50 km        | 20180723 | CS2  | 36.2142          | 126.5355          | Agricultural  | 29.9             | 29.6         | 7.7                         | 7.5 |

<sup>-</sup> Not analyzed

<sup>\*</sup> The sample at these sites were collected at ebb tide time in the estuary (considered to be seawater locations).

**Table S3.** Instrumental conditions of gas chromatograph equipped with a mass selective detector for analyses of persistent toxic substances.

| GC/MSD system                          | Agilent 7890A GC and 5975C MSD                                                                                                                       |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Column                                 | DB-5MS UI (30 m long, 0.25 mm i.d., 0.25 µm film thickness)                                                                                          |
| Gas flow                               | 1 mL/min He                                                                                                                                          |
| Injection mode                         | Splitless                                                                                                                                            |
| Injection volume                       | 2 μL                                                                                                                                                 |
| Injector temperature                   | 300 °C                                                                                                                                               |
| Ionization                             | EI mode (70 eV)                                                                                                                                      |
| MS temperature                         | 180 °C                                                                                                                                               |
| Detector temperature  Oven temperature | 230 °C<br>60 °C hold 2 min                                                                                                                           |
| (PAHs and SOs)                         | Increase 6 °C/min to 300 °C                                                                                                                          |
| (1711s and 50s)                        | 300 °C hold 13 min                                                                                                                                   |
| Oven temperature                       | 60 °C hold 5 min                                                                                                                                     |
| (APs)                                  | Increase 10 °C/min to 100 °C                                                                                                                         |
| (111 0)                                | Increase 20 °C/min to 300 °C                                                                                                                         |
| Targeted PAHs (39)                     | Naphthalene (Na), 1-Methylnaphthalene (1-Na), 2-Methylnaphthalene (2-Na),                                                                            |
| . ,                                    | 1,3-Dimethylnaphthalene (1,3-Na), 1,4,5-Trimethylnaphthalene (1,4,5-Na),                                                                             |
|                                        | 1,2,5,6-Tetramethylnaphthalene (1,2,5,6-Na), Acenaphthylene (Acl), Acenaphthene (Ace),                                                               |
|                                        | Fluorene (Flu), 9-Methylfluorene (9-Flu), 1-Methylfluorene (1-Flu),                                                                                  |
|                                        | 1,7-Methylfluorene (1,7-Flu), 9-n-Propylfluorene (9-n-Propyl-Flu),                                                                                   |
|                                        | Dibenzothiophene (Dbthio), 2-Methyldibenzothiophene (2-Dbthio),                                                                                      |
|                                        | 2,4-Dimethyldibenzothiophene (2,4-Dbthio),                                                                                                           |
|                                        | 2,4,7-Trimethyldibenzothiophene (2,4,7-Dbthio), Phenanthrene (Phe),                                                                                  |
|                                        | 3-Methylphenanthrene (3-Phe), 2-Methylphenanthrene (2-Phe),                                                                                          |
|                                        | 1,6-Dimethylphenanthrene (1,6-Phe), 1,2-Dimethylphenanthrene (1,2-Phe),                                                                              |
|                                        | 1,2,9-Trimethylphenanthrene (1,2,9-Phe), 1,2,6,9-Tetramethylphenanthrene (1,2,6,9-Phe),                                                              |
|                                        | Anthracene (Ant), Fluoranthene (Fl), Pyrene (Py), Benzo[a]anthracene (BaA), Chrysene (Chr), 3-Methylchrysene (3-Chr), 6-Ethylchrysene (6-Ethyl-Chr), |
|                                        | 1,3,6-Trimethylchrysene (1,3,6-Chr), Benzo[b]fluoranthene (BbF),                                                                                     |
|                                        | Benzo[ $k$ ]fluoranthene (BkF), Benzo[ $a$ ]pyrene (BaP), Perylene (Pery),                                                                           |
|                                        | Indeno[ $1,2,3-c,d$ ]pyrene (IcdP), Dibenz[ $a,h$ ]anthracene (DbahA), and                                                                           |
|                                        | Benzo $[g,h,i]$ perylene (BghiP)                                                                                                                     |
|                                        | Benzots, it, iperficie (Bgini)                                                                                                                       |
| Targeted SOs (10)                      | 1,3-Diphenylpropane (SD1), cis-1,2Diphenylcyclobutane (SD2),                                                                                         |
| , ,                                    | 2,4-Diphenyl-1-butene (SD3), 2,4,6-Triphenyl-1-hexene (SD4),                                                                                         |
|                                        | 2,4,6-Triphenyl-1-hexene (ST1), 1e-Phenyl-4e-(1-phenylethyl)-tetralin (ST2),                                                                         |
|                                        | 1a-Phenyl-4e-(1-phenylethyl)-tetralin (ST3),                                                                                                         |
|                                        | 1a-Phenyl-4a-(1-phenylethyl)-tetralin (ST4),                                                                                                         |
|                                        | 1e-Phenyl-4a-(1-phenylethyl)-tetralin (ST5), and                                                                                                     |
|                                        | 1,3,5-Triphenylcyclohexane (isomer mix) (ST6)                                                                                                        |
| Targeted APs (6)                       | 4-tert-Octylphenol (OP), 4-tert-Octylphenol monoethoxylate (OP1EO),                                                                                  |
| ` ` ` `                                | 4-tert-Octylphenol diethoxylate (OP2EO), Nonylphenols (NPs, isomer mix),                                                                             |
|                                        | Nonylphenol monoethoxylates (NP1EOs, isomer mix),                                                                                                    |
|                                        | and Nonylphenol diethoxylates (NP2EOs, isomer mix)                                                                                                   |

**Table S4.** Certified and measured concentrations for selected PAHs in standard reference material (SRM) 1944 to check the accuracy of the method.

| DAIL                        | Certified concentration         | Measured concentration             | Recovery      |
|-----------------------------|---------------------------------|------------------------------------|---------------|
| PAHs                        | (μg g <sup>-1</sup> dry weight) | ( $\mu g g^{-1} dry weight, n=3$ ) | (%)           |
| Phenanthrene                | $5.3 \pm 0.2$                   | $4.6 \pm 0.3$                      | $87 \pm 5.3$  |
| Fluoranthene                | $8.9 \pm 0.3$                   | $7.8 \pm 0.1$                      | $87 \pm 1.6$  |
| Pyrene                      | $9.7 \pm 0.4$                   | $7.9 \pm 0.3$                      | $81 \pm 2.9$  |
| Benz[a]anthracene           | $4.7 \pm 0.1$                   | $4.8 \pm 0.2$                      | $102 \pm 5.1$ |
| Chrysene                    | $4.9 \pm 0.1$                   | $4.1 \pm 0.2$                      | $85 \pm 3.3$  |
| Benzo[b]fluoranthene        | $3.9 \pm 0.4$                   | $4.7 \pm 0.2$                      | $121 \pm 6.4$ |
| Benzo[j]fluoranthene        | $2.1 \pm 0.4$                   | $2.1 \pm 0.1$                      | $103 \pm 3.6$ |
| Benzo[k]fluoranthene        | $2.3 \pm 0.2$                   | $2.9 \pm 0.2$                      | $126 \pm 7.7$ |
| Benzo[a]pyrene              | $4.3 \pm 0.1$                   | $5.3 \pm 0.2$                      | $122 \pm 5.1$ |
| Benzo $[e]$ pyrene          | $3.3 \pm 0.1$                   | $4.0 \pm 0.1$                      | $122 \pm 4.1$ |
| Perylene                    | $1.2 \pm 0.2$                   | $0.9 \pm 0.1$                      | $80 \pm 4.9$  |
| Indeno $[1,2,3-c,d]$ pyrene | $2.8 \pm 0.1$                   | $3.3 \pm 0.2$                      | $119 \pm 4.9$ |
| Dibenz[ $a,h$ ]anthracene   | $4.2 \pm 0.1$                   | $5.1 \pm 0.1$                      | $121\pm1.8$   |
| Benzo[ $g,h,i$ ]perylene    | $4.8 \pm 0.1$                   | $3.5 \pm 0.1$                      | $122 \pm 2.7$ |

**Table S5.** Concentrations of PAHs in sediments of the Yellow and Bohai seas.

| Na 9.0 11.7 8.9 11.6 8.6 13.9 6.4 12.8 11.8 13.7 8.1 10.2 9.7 8.1 5.8 11.8 7.6 6.3 6.6 10. 35.6 33.7 16.7 17.1 19.3 17.2 6.8 9.5 16.7 13.1 1 2-Na 2.0 3.1 1.7 3.0 1.6 3.7 1.0 3.6 2.0 2.8 2.1 2.1 2.1 3.5 2.2 2.8 2.0 1.6 1.2 2.5 17.8 24.2 5.3 3.7 6.5 1.4 2.0 3.1 6.7 2.8 4 1-Na 2.1 1.2 6.0 7.6 2.1 1.4 2.3 2.2 1 1.3-Na 1.3-Na | 5 12.1              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1-Na 2.1 1.2 6.0 7.6 2.1 1.4 2.3 2.2 1 1,3-Na 3.4 6.4 1.5                                                                                                                                                                                                                                                                          | 3 4.0<br>2.8<br>2.7 |
| 1,3-Na 3.4 6.4 1.5                                                                                                                                                                                                                                                                                                                 | 2.8<br>2.7          |
|                                                                                                                                                                                                                                                                                                                                    | 2.7                 |
| 1.4.5 No.                                                                                                                                                                                                                                                                                                                          |                     |
| 1,4,5-Na                                                                                                                                                                                                                                                                                                                           | 2.1                 |
| 1,2,5,6-Na 4.1                                                                                                                                                                                                                                                                                                                     |                     |
| Acl                                                                                                                                                                                                                                                                                                                                |                     |
| Ace 3.9                                                                                                                                                                                                                                                                                                                            |                     |
| Flu 1.6 3.5 12.2 2.0 2.4 4.1 2.9                                                                                                                                                                                                                                                                                                   | 6.2                 |
| 9-Flu                                                                                                                                                                                                                                                                                                                              |                     |
| 1-Flu 2.2 3.7 32.5 2.0 2.9 2.1 6.9                                                                                                                                                                                                                                                                                                 | 38.1                |
| 1,7-Flu 1.8 9.6 1.6 2.3                                                                                                                                                                                                                                                                                                            | 6.9                 |
| 9-n-Propyl-Flu                                                                                                                                                                                                                                                                                                                     |                     |
| Dbthio                                                                                                                                                                                                                                                                                                                             |                     |
| 2-Dbthio                                                                                                                                                                                                                                                                                                                           |                     |
| 2,4-Dbthio                                                                                                                                                                                                                                                                                                                         |                     |
| 2,4,7-Dbthio                                                                                                                                                                                                                                                                                                                       |                     |
| Phe 2.6 2.7 2.4 3.3 4.2 1.3 1.3 4.4 3.6 2.2 1.6 1.6 1.6 1.9 25.7 49.4 8.9 7.3 14.2 1.8 1.2 1.9 10.2 1.8 2                                                                                                                                                                                                                          | 7 25.3              |
| 3-Phe 0.7 0.7 0.7 0.9 1.2 1.3 1.0 0.4 0.3 0.3 3.8 15.0 1.5 1.9 4.5 0.6 5.6 0.3 0                                                                                                                                                                                                                                                   | 5 17.5              |
| 2-phe 0.7 0.8 0.7 1.0 1.2 1.2 1.2 0.9 5.4 16.4 2.1 1.7 4.1 3.8                                                                                                                                                                                                                                                                     | 16.0                |
| 1,6-Phe 1.6 1.7 1.8 2.5 2.6 7.1 3.0 1.2 0.8 0.7 5.7 33.7 3.0 2.9 6.8 0.8 5.7                                                                                                                                                                                                                                                       | 34.4                |
| 1,2-Phe 2.3 0.7 0.9                                                                                                                                                                                                                                                                                                                | 4.7                 |
| 1,2,9-Phe                                                                                                                                                                                                                                                                                                                          |                     |
| 1,2,6,9-Phe 0.9 1.2                                                                                                                                                                                                                                                                                                                | 1.5                 |
| Ant 0.4 0.4 0.7 0.7 0.5 3.0 10.6 0.8 1.1 2.3 2.3                                                                                                                                                                                                                                                                                   | 8.0                 |
| FI 4.2 4.0 4.3 5.4 7.5 1.2 9.1 6.5 3.0 1.8 1.5 1.5 1.2 27.6 79.3 8.1 9.3 26.1 1.5 1.7 18.1 1                                                                                                                                                                                                                                       | 61.1                |
| Py 4.2 4.1 3.8 5.0 7.1 0.9 9.2 5.4 2.3 1.5 1.3 1.5 1.4 23.7 73.1 7.0 7.9 18.2 1.7 1.2 11.1                                                                                                                                                                                                                                         | 54.5                |
| BaA 1.4 1.5 1.4 2.0 2.7 3.1 2.4 0.9 0.6 12.0 40.8 4.8 4.3 7.8 0.8 0.6 4.8                                                                                                                                                                                                                                                          | 79.3                |
| Chr 1.9 2.1 2.1 2.7 3.8 3.9 3.1 1.5 29.2 89.0 12.2 10.6 22.8 1.7 1.6 11.1 1                                                                                                                                                                                                                                                        | 3 116               |
| 3-Chr 0.6 0.8 0.5 0.9 0.8 1.5 1.0 10.3 55.0 5.1 5.3 13.4 0.5 1.7 7.7                                                                                                                                                                                                                                                               | 192                 |
| 6-Ethyl-Chr 2.2 0.6 0.6 0.7                                                                                                                                                                                                                                                                                                        | 8.5                 |
| 1,3,6-Chr 1.6                                                                                                                                                                                                                                                                                                                      | 2.1                 |
| BbF 3.3 3.1 2.9 5.7 5.4 6.9 5.9 2.6 22.3 90.3 9.3 10.2 27.0 2.0 1.7 18.7                                                                                                                                                                                                                                                           | 212                 |
| BkF 2.2 2.0 2.8 2.5 17.6 58.5 7.6 6.7 15.0 2.0 7.4                                                                                                                                                                                                                                                                                 | 79.6                |
| BaP 1.9 1.5 1.7 1.8 17.4 52.1 5.9 5.7 15.5 1.5 5.5                                                                                                                                                                                                                                                                                 | 104                 |
| Pery 2.1 2.1 3.4 3.3 64.9 9.5 6.8 319 4.3 19.1 21.1 1.8 6.8                                                                                                                                                                                                                                                                        | 26.2                |
| IcdP 3.0 2.0 2.6 3.0 25.4 92.5 13.2 11.5 21.0 2.7 8.0                                                                                                                                                                                                                                                                              | 193                 |
| DbahA 22.1 62.7 13.1 11.0 10.8 3.2                                                                                                                                                                                                                                                                                                 | 92.9                |
| BghiP 2.0 3.2 2.8 2.8 3.5 19.2 65.2 6.4 6.6 15.2 8.2                                                                                                                                                                                                                                                                               | 136                 |

<sup>&</sup>lt;sup>a</sup> Shaded concentrations indicate values that exceeded ISQG (orange) and PEL (red).

Table S5. (Continued)

| Target PAHs         | _   |      | QD4         |     | OD6        | OD7 | R71        | R72  | IV1 | IV2 | LV3 | I V4 | VC1 | VC2  | VC3  | VC4        | VC5 | YC6 YC7  | VC8 | NT1         | NT2 | NT3  | NT4 | NT5        | NT6  | NT7 | NTS         | NT9         | NT10        | DI 1 | DL2  |
|---------------------|-----|------|-------------|-----|------------|-----|------------|------|-----|-----|-----|------|-----|------|------|------------|-----|----------|-----|-------------|-----|------|-----|------------|------|-----|-------------|-------------|-------------|------|------|
| Na                  |     |      | 17.5        |     | 8.8        | 8.9 |            | 8.3  | 6.4 | 7.3 | 2.1 | 8.4  | 7.7 | 8.6  | 6.3  | 13.5 5     |     | 18.3 5.7 | 5.6 | 9.8         | 5.3 |      |     |            | 13.0 |     |             |             |             |      | 15.2 |
| 2-Na                |     |      | 3.9         |     |            | 2.8 |            |      | 1.9 |     | 2.1 |      |     | 2.3  |      | 19.0 2     |     |          | 1.7 |             |     |      | 2.7 | 5.0        |      | 3.8 |             | 9.0         | 66.4        |      |      |
| 1-Na                | 1./ |      | 1.6         | 1.0 | 1.3        | 2.0 | 1.3        | 2.3  | 1.9 | 2.9 |     | 1.5  | 2.0 | 2.3  | 3.3  | 6.2        | 2.1 | 11.4     | 1./ | 3.9         | 1.5 | 1.5  | 2.1 | 1.2        | 4.2  | 3.0 | 4.5         | 2.7         | 32.5        |      | 2.2  |
| 1,3-Na              |     | 3.2  | 1.0         |     | 1.3        |     | 1.3        |      |     |     |     |      |     |      |      | 5.2        |     | 12.0     |     |             |     | 1.5  |     | 1.2        |      |     |             | 2.7         | 16.6        |      |      |
| 1,4,5-Na            |     |      |             |     |            |     |            |      |     |     |     |      |     |      |      | 5.9        |     | 16.4     |     |             |     | 1.7  |     |            |      |     |             | 3.2         | 22.3        |      |      |
| 1,2,5,6-Na          |     |      |             |     |            |     |            |      |     |     |     |      |     |      |      | 7.6        |     | 20.0     |     |             |     | 1.7  |     |            |      |     |             | 3.2         |             | 6.3  |      |
| Acl                 |     |      |             |     |            |     |            |      |     |     |     |      |     |      |      | 7.0        |     | 20.0     |     |             |     | 1./  |     |            |      |     |             |             | 8.6         | 0.3  |      |
| Ace                 |     |      |             |     |            |     |            |      |     |     |     |      |     |      |      | 4.8        |     | 6.0      |     |             |     |      |     |            |      |     |             | 44.0        |             |      |      |
| Flu                 |     | 4.2  | 2.2         |     | 2.2        |     |            |      |     | 1.8 |     |      |     | 2.9  | 2.0  | 4.8<br>8.9 |     | 14.3     |     | 1.9         |     | 1.7  |     | 2.0        |      |     |             | 149         | 526         | 4.1  | 2.0  |
| 9-Flu               |     | 4.2  | 2.2         |     | 2.2        |     |            |      |     | 1.0 |     |      |     | 2.9  | 2.9  | 8.9        |     | 14.5     |     | 1.9         |     | 1./  |     | 2.0        |      |     |             | 2.8         | 4.0         | 4.1  | 2.0  |
| 1-Flu               |     | 3.5  | 3.0         |     | 1.7        | 2.0 | 2.4        |      |     | 3.5 |     |      | 2 2 | 3.9  | 2.0  | 6.5        |     | 20.3     |     | 3.0         |     | 2.0  | 1 0 | 2.6        | 1.8  | 3.0 | 1.6         | 2.8<br>94.5 |             | 2.7  | 2.0  |
| 1,7-Flu             |     | 3.3  | 3.0         |     | 1./        | 2.0 | 2.4        |      |     | 3.3 |     |      | 2.3 | 3.9  | 2.0  | 1.8        |     | 4.7      |     | 1.8         |     | 2.0  | 1.8 | 2.0        | 1.6  | 3.0 | 1.6         | 5.5         | 14.4        |      | 2.0  |
| 9-n-Propyl-Fl       |     |      |             |     |            |     |            |      |     |     |     |      |     |      |      | 1.6        |     | 4.7      |     | 1.0         |     |      |     |            |      |     |             | 3.3         | 1.2         | 1./  |      |
| Dbthio              |     |      |             |     |            |     |            |      |     |     |     |      |     |      |      |            |     |          |     |             |     |      |     |            |      |     |             | 11.7        |             |      |      |
| 2-Dbthio            |     |      |             |     |            |     |            |      |     |     |     |      |     |      |      | 1.2        |     | 3.8      |     |             |     |      |     |            |      |     |             | 11./        |             | 0.9  |      |
| 2,4-Dbthio          |     |      |             |     |            |     |            |      |     |     |     |      |     |      |      | 1.2        |     | 3.0      |     |             |     |      |     |            |      |     |             |             | 3.9         | 0.9  |      |
| 2,4,7-Dbthio        |     |      |             |     |            |     |            |      |     |     |     |      |     |      |      |            |     |          |     |             |     |      |     |            |      |     |             |             | 1.0         |      |      |
| Phe                 | 2.8 | 15.5 | 11.3        | 1.2 | 8.5        | 2.5 | 26         | 4.8  | 1.3 | 3.0 |     |      | 1.9 | 6.3  | 10.2 | 57.7       | 1 2 | 58.9     | 1.2 | 7.2         | 2.3 | 6.2  | 1.4 | 5 5        | 3.1  | 2.9 | 3.5         | 1424        | 5381        | 22.6 | 5.2  |
| 3-Phe               | 0.5 | 2.6  | 3.8         | 1.2 | 2.7        | 0.7 | 3.6<br>1.1 | 1.2  | 0.6 | 1.8 |     |      |     | 1.8  | 3.3  | 20.2       |     | 25.4 0.3 | 0.4 | 3.7         | 0.9 | 4.5  | 1.4 | 5.5<br>2.5 | 1.3  |     | 1.5         | 138         |             |      | 0.6  |
| 2-phe               | 0.3 | 3.5  | 3.6         |     | 2.4        | 0.7 | 0.9        | 1.2  | 0.0 | 1.0 |     |      | 0.9 | 1.0  |      | 13.2       | J.0 | 17.0     | 0.4 | 2.1         | 0.9 | 3.1  |     | 2.3<br>1.6 |      | 0.9 | 1.3         | 115         | 968         |      |      |
| 1,6-Phe             | 0.7 |      | 5.5         |     | 3.1        |     | 1.2        | 1.1  | 0.9 | 2.5 |     |      | 1.1 | 1.7  |      | 26.8       |     | 28.3     |     | 8.8         |     | 6.7  |     | 1.7        |      |     | 1.1         | 62.5        | 280         |      | 0.7  |
| 1,0-1 he<br>1,2-Phe | 0.7 | 2.9  | 0.8         |     | 3.1        |     | 1.2        | 1.3  | 0.9 | 2.3 |     |      | 1.1 | 1./  | 2.0  | 2.3        |     | 5.7      |     | 0.0         |     | 0.7  |     | 1./        | 1./  | 1.3 | 1.4         | 4.2         | 18.7        |      |      |
| 1,2,9-Phe           |     |      | 0.6         |     |            |     |            |      |     |     |     |      |     |      |      | 2.3        |     | 3.1      |     |             |     |      |     |            |      |     |             | 4.2         | 1.5         | 1.1  |      |
| 1,2,6,9-Phe         |     |      |             |     |            |     |            |      |     |     |     |      |     |      |      | 1.1        |     | 3.6      |     | 1.7         |     |      |     |            |      |     |             | 2.6         |             | 2.1  |      |
| Ant                 |     | 1.6  | 2.0         |     | 2.1        |     | 0.5        | 1.1  |     | 1.5 |     |      |     | 2.2  | 2.5  | 17.3       |     | 19.9     |     | 2.0         | 0.5 | 1.3  |     | 1.4        | 0.6  | 0.6 | 0.6         | 361         |             | 2.1  | 0.8  |
| Fl                  | 1.5 |      | 21.0        |     |            | 3.1 |            | 18.3 | 2.2 | 7.5 |     | 1.4  | 2.2 | 21.9 |      |            |     | 144      | 1.3 | 25.4        |     | 10.0 |     | 1.4        |      |     | 5.3         |             | 6406        |      |      |
| Py                  | 1.3 | 5.4  | 16.9        |     |            | 1.7 |            | 11.9 |     | 5.8 |     | 1.4  |     |      | 23.4 |            |     | 143 0.9  | 1.3 |             |     | 10.0 | 1.0 | 13.6       |      |     | 3.3<br>4.7  |             | 10857       |      |      |
| BaA                 | 1.2 | 4.4  | 15.2        |     | 8.1        | 1./ | 0.8        | 8.3  | 0.7 | 2.4 |     | 1.5  | 0.8 |      |      | 72.6       |     | 90.7     | 1.3 |             |     | 5.4  | 1.0 | 6.3        | 1.3  |     | 2.0         |             | 4152        |      |      |
| Chr                 | 2.8 | 11.7 |             |     | 13.7       | 1 2 | 1.7        | 12.6 |     | 3.0 |     |      | 1.3 |      |      | 78.4       |     | 103      |     |             | 3.6 |      |     | 8.4        | 2.2  |     | 3.2         |             | 5072        |      |      |
| 3-Chr               |     | 16.4 |             |     | 9.8        |     |            | 3.5  |     |     |     |      | 0.5 | 2.4  |      |            |     | 42.1     |     | 8.2         |     | 3.0  |     | 2.7        |      | 1.0 |             | 214         |             |      |      |
| 6-Ethyl-Chr         | 2.2 | 0.5  |             |     | 0.9        | 0.7 | 1.0        | 3.3  | 0.0 | 1.6 |     |      | 0.3 |      | 0.9  |            |     |          |     | 1.7         | 0.9 | 0.8  |     | 0.5        | 0.9  | 1.0 | 1.0         | 28.0        | 1223<br>206 |      | 1.0  |
| 1,3,6-Chr           |     | 0.3  | 0.9         |     | 0.9        |     |            |      |     |     |     |      |     | 0.0  | 0.9  | 3.7        |     | 11.8     |     | 0.6         |     | 0.8  |     | 0.5        |      |     |             | 2.8         | 18.2        |      |      |
| BbF                 | 2.0 | 10.5 | 27.7        |     |            |     |            | 17.4 |     | 4.0 |     |      | 2.4 | 15.9 | 10.2 | 115        |     | 1.42     |     | 28.1        | 4.0 | 10.6 |     | 11.6       | 2.2  | 1.1 | 4.0         |             | 5254        |      | 2.4  |
| BkF                 | 2.8 |      | 37.7        |     | 24.6       |     |            | 17.4 |     | 4.9 |     |      | 2.4 |      |      |            |     | 143      |     |             | 4.9 | 10.6 |     | 11.6       | 3.3  | 4.4 | 4.0         |             |             |      |      |
| BaP                 |     | 4.4  | 16.7        |     | 10.1       |     |            | 6.9  |     | 1.5 |     |      |     | 6.6  |      | 38.5       |     | 52.4     |     | 9.0<br>13.2 | 1 0 | 3.5  |     | 3.9        |      | 1.7 | 1 0         |             | 4652        |      |      |
| Pery                |     | 4.3  | 16.8<br>3.9 |     | 8.8<br>3.4 |     |            | 7.0  |     | 1.4 |     |      |     | 10.6 | 4.3  | 68.1       |     | 79.0     |     | 13.2        |     | 5.1  |     | 4.9        | 39.6 | 1.9 | 1.8<br>30.1 |             | 4241        |      |      |
| IcdP                | 2.7 | 0.2  |             |     |            |     |            | 0.2  |     |     |     |      |     | 3.8  |      | 11.7       |     | 19.9     |     |             |     | 5.3  |     |            | 39.0 |     | 30.1        |             | 725         |      |      |
| DbahA               | 2.7 | 8.3  | 26.4        |     | 18.2       |     |            | 8.3  |     | 2.2 |     |      |     | 8.2  | 10.9 |            |     | 99.1     |     |             | 2.5 | 0.4  |     | 6.2        |      | 2.0 |             | 895         | 7384        |      |      |
|                     | 2.3 | 6.1  | 15.1        |     | 2.6        |     |            | 10.2 |     | 2.1 |     |      |     | 47   | 2.0  | 17.0       |     | 19.4     |     | 3.1         | 26  | 06   |     | 60         |      | 2.2 | 1.0         | 165         | 1301        |      |      |
| BghiP               |     | 6.7  | 18.7        |     | 19.3       |     |            | 10.2 |     | 2.1 |     |      |     | 4./  | 11.3 | /9.4       |     | 100      |     | 17.8        | 2.6 | 8.6  |     | 6.8        |      | 2.2 | 1.9         | /90         | 4408        | 29.9 | 2.5  |

<sup>&</sup>lt;sup>a</sup> Shaded concentrations indicate values that exceeded ISQG (orange) and PEL (red).

Table S5. (Continued)

| Target PAHs             | (   |      |      |      | YK3        | PI1  | PI2          | JZ1 | 172  | 173 | 174  | 175  | HI.1 | HI 2 | HI 3       | HL4        | HI.5 | НІ 6 | OH1        | OH2 | OH3  | OH4  | OH5  | OH6  | OH7  | TS1  | TS2  | TS3  | TS5 | TS6        | TS7  | TJ1 |
|-------------------------|-----|------|------|------|------------|------|--------------|-----|------|-----|------|------|------|------|------------|------------|------|------|------------|-----|------|------|------|------|------|------|------|------|-----|------------|------|-----|
| Na                      |     |      | 40.0 |      |            |      |              |     |      |     |      |      |      |      |            |            |      |      | _          | _   | _    | 27.1 | _    | _    | 14.4 |      |      |      |     |            | 19.4 |     |
| 2-Na                    |     | 4.4  |      |      | 12.2       |      |              |     |      |     | 18.4 |      |      | 6.8  |            | 121        |      | 0.9  | 4.4        | 0.9 |      | 22.4 |      | 52.3 |      | 4.3  |      |      |     |            | 21.2 |     |
| 1-Na                    | 1.7 | 1.6  |      | 3.5  | 4.3        | 6.0  |              |     | 2.3  | 3.1 | 8.1  | 2.8  | 2.6  |      | 1.4        | 45.0       |      | 0.7  | 1.3        | 0.7 | 6.2  | 8.9  |      | 17.5 |      | 1.8  |      | 1.7  |     |            | 7.6  | 7.7 |
| 1,3-Na                  |     | 1.0  | 5.8  | 2.1  | 3.3        | 4.7  | 6.9          | 1.0 | 2.3  | 1.9 | 4.8  | 2.3  | 1.7  | 1.6  | 1.4        | 51.2       | 1.9  |      | 1.5        |     | 5.6  |      | 1.9  | 13.8 | 1.9  | 1.6  | 2.0  | 1.7  | 1.4 | 1.5        | 6.3  |     |
| 1,4,5-Na                |     |      |      | 1.7  | 3.0        | 4.7  | 5.8          |     |      | 2.0 |      | 3.6  | 1./  | 1.8  |            | 90.4       |      |      |            |     | 6.1  |      | 1.7  | 14.4 |      | 1.8  |      |      |     |            | 5.1  |     |
| 1,2,5,6-Na              |     |      | 2.1  | 2.0  | 2.3        | 4.6  |              |     |      | 1.7 |      | 1.9  |      | 1.0  |            | 66.7       |      |      |            |     | 6.0  | 4.9  | 1./  | 13.8 |      | 1.0  |      |      |     |            | 3.1  |     |
| Acl                     |     |      | 2.9  | 2.0  | 2.3        | 4.4  | 9.6<br>2.4   |     |      | 1./ | 4.3  | 1.9  |      |      |            | 40.9       |      |      |            |     | 0.0  | 1.8  |      | 2.9  |      |      |      |      |     |            | 3.1  |     |
| Ace                     |     |      | 15.2 | 2.0  |            |      | 14.4         |     |      |     |      |      |      |      |            | 23.0       |      |      |            |     |      |      | 15.7 |      |      |      |      |      |     |            | 2.4  |     |
| Flu                     |     | 20   |      |      | <i>c</i> 1 | 27   |              |     | 22   |     | 2.2  | 2.1  | 2.4  | 27   | 2.2        |            | 2.6  |      | 2.2        |     | 9.3  | 21.9 |      |      | 2.7  | 5.0  | 2.4  | 2.4  |     | 1 6        | 15.0 |     |
| 9-Flu                   |     | 2.0  | 13.1 | 0.0  | 0.4        | 5.7  | 16.0         | 1.9 | 2.3  |     | 3.3  | 3.1  | 3.4  | 3.7  | 2.3        | 121<br>4.8 | 2.0  |      | 2.2        |     | 9.3  | 21.9 | 10.5 | 39.3 | 2.7  | 3.0  | 3.4  | 2.4  |     | 1.0        | 13.0 |     |
| 1-Flu                   |     | 20   | 10.5 | 62   | 10         | 2.5  | 20.2         | 1.0 | 2.5  | 17  | 2.5  | 2.0  |      | 10   | 2.4        |            | 2.0  |      | 26         |     | 0.1  | 0.2  | 2.1  | 27.0 |      | 2.0  | 2.2  |      | 17  | 2.1        | 42.7 |     |
| 1,7-Flu                 |     | 2.8  | 10.5 |      | 4.8        | 3.5  |              | 1.9 | 2.5  | 1.7 |      | 3.9  |      | 4.8  | 2.4        |            | 2.0  |      | 2.6        |     | 8.4  |      | 3.1  | 27.9 |      | 3.0  | 2.2  |      | 1.7 | 2.1        |      |     |
|                         |     |      | 2.7  | 2.4  | 4.7        | 2.4  | 6.8          |     |      |     | 2.0  | 3.4  |      | 1.9  |            | 170        |      |      |            |     | 11.3 | 10.9 | 3.3  | 39.8 |      | 3.8  | 1.9  |      |     |            | 10.4 |     |
| 9-n-Propyl-Fl<br>Dbthio |     |      |      |      |            |      | 1.0          |     |      |     |      |      |      |      |            | 3.1        |      |      |            |     | 2.2  | 2.2  | 2.2  | 1.5  |      |      |      |      |     |            | 1 1  |     |
| 2-Dbthio                |     |      |      |      |            |      | 1.2          |     |      |     |      |      |      |      |            | 32.5       |      |      |            |     |      | 2.3  | 2.3  | 5.1  |      |      |      |      |     |            | 1.1  |     |
| 2,4-Dbthio              |     |      |      |      |            |      | 1.9          |     |      |     |      |      |      |      |            | 29.6       |      |      |            |     | 2.2  | 1.0  |      | 3.0  |      |      |      |      |     |            |      |     |
|                         |     |      |      |      |            |      |              |     |      |     |      |      |      |      |            | 19.0       |      |      |            |     | 1.8  |      |      | 1.6  |      |      |      |      |     |            |      |     |
| 2,4,7-Dbthio            | 1.0 | 11.7 | c0 1 | 10.7 | 20.5       | 12.0 | <i>(</i> 2.0 |     | 0.2  | 2.2 | 15.2 | 12.0 | 12.0 | 167  | <i>c</i> 2 | 22.9       | 10.4 | 2.1  | <i>-</i> 4 | 1.0 | 2.1  | 105  | 214  | 1.3  | 10.0 | 10.2 | 15.0 | 12.4 | 4.0 | <i>-</i> 2 | 52.2 |     |
| Phe                     | 1.8 |      | 60.4 |      |            |      |              |     |      | 3.2 |      |      |      | 16.7 |            | 357        |      |      | 5.4        | 1.6 |      | 105  |      |      |      |      |      | 13.4 |     | 5.2        | 53.3 |     |
| 3-Phe                   |     | 2.7  |      | 4.4  | 7.8        |      | 13.1         |     |      | 0.8 | 4.2  | 9.3  | 2.7  |      | 1.3        | 195        |      | 0.3  | 1.6        |     |      | 28.9 |      |      |      | 8.9  |      |      | 1.2 | 1.1        | 23.5 |     |
| 2-phe                   |     | 2.7  | 11.5 |      |            | 9.5  |              |     |      | 1.1 |      | 10.4 |      |      | 1.8        |            | 5.0  |      | 1.8        |     |      | 36.0 |      |      |      |      |      |      |     | 1.6        | 23.8 |     |
| 1,6-Phe<br>1,2-Phe      |     | 4.1  |      |      | 14.1       |      |              | 2.1 | 4.6  | 2.3 |      | 28.9 | 4.7  | 12.9 | 4.8        | 715        | 4.1  |      | 3.9        |     |      | 47.9 |      |      | 6.4  | 34.1 |      |      | 1.9 | 2.2        | 43.5 | 2.6 |
| *                       |     |      | 1.1  | 0.9  | 1.2        | 1.5  |              |     |      |     | 1.2  | 1.7  |      | 0.9  |            | 68.9       |      |      |            |     | 5.8  | 4.3  | 2.7  | 12.9 |      | 3.9  | 1.0  | 0.8  |     |            | 3.6  |     |
| 1,2,9-Phe               |     |      |      |      |            |      | 1.6          |     |      |     |      |      |      |      |            | 12.3       |      |      |            |     | 0.7  | 1.0  |      | 1.8  |      | 4.   |      |      |     |            | 1.0  |     |
| 1,2,6,9-Phe             |     |      |      |      |            | 4.0  | 1.3          |     | 4.0  |     |      |      |      | 4.0  |            | 38.2       |      |      |            |     | 2.1  | 1.2  |      | 5.1  |      | 4.6  | 4.0  |      |     |            | 1.3  |     |
| Ant                     |     |      | 14.6 |      |            |      | 16.6         |     | 1.9  |     |      |      | 1.2  |      | 0.6        | 174        | 1.4  |      | 0.8        |     | 8.3  | 24.0 |      | 28.2 |      |      | 1.9  |      | 0.4 | 0.5        |      | 0.7 |
| Fl                      | 1.5 |      | 126  |      |            |      |              |     | 18.7 |     |      |      |      | 22.8 |            | 286        | 12.4 |      | 4.8        |     | 101  | 189  |      |      | 6.4  |      |      | 30.7 |     | 6.9        | 74.6 |     |
| Py                      | 1.7 |      | 107  |      |            |      |              |     | 14.2 |     |      |      |      | 19.4 |            | 916        | 10.0 |      | 4.8        |     |      | 126  |      |      |      |      |      | 23.8 |     | 5.5        | 49.8 |     |
| BaA                     | 0.8 | 8.9  |      |      | 18.5       |      | 96.2         |     |      | 1.4 |      | 8.5  |      | 13.1 |            |            |      | 1.1  | 4.6        | 0.7 | 114  | 189  |      |      |      |      |      | 35.5 |     | 3.7        | 79.5 |     |
| Chr                     | 1.7 |      | 147  |      |            |      |              |     | 16.0 |     |      |      |      | 37.4 |            |            | 17.6 |      | 12.1       |     |      |      |      |      |      |      |      | 53.7 |     | 9.0        | 140  |     |
| 3-Chr                   | 0.5 | 9.9  |      |      | 35.5       |      |              | 5.8 | 7.0  | 2.5 |      |      |      | 33.6 |            |            | 11.1 | 1.4  | 20.4       | 0.6 | 221  |      |      |      |      |      |      | 46.4 | 3.3 | 6.1        | 314  | 3.8 |
| 6-Ethyl-Chr             |     |      | 4.9  | 1.5  | 1.3        | 4.5  | 5.0          |     | 0.6  |     | 1.2  | 0.9  | 0.7  | 1.5  | 0.5        |            | 0.8  |      | 0.8        |     | 14.1 |      |      | 45.0 | 1.0  |      | 2.2  | 2.4  |     |            | 8.7  |     |
| 1,3,6-Chr               |     |      |      |      |            |      | 0.9          |     |      |     |      |      |      | 0.6  |            | 71.6       |      |      | 0.9        |     | 9.4  |      | 10.2 |      |      | 21.1 |      | 0.6  |     |            | 7.8  |     |
| BbF                     | 2.0 |      | 212  |      |            |      |              |     | 16.9 | 2.2 |      |      |      | 42.5 |            | 1792       | 16.9 | 1.7  | 8.2        |     |      |      |      |      |      |      |      | 139  |     | 8.4        | 232  |     |
| BkF                     | 2.0 |      | 110  |      |            |      |              |     | 9.3  |     |      |      |      | 26.2 |            |            |      | 1.6  | 4.8        |     |      |      |      |      | 8.7  |      |      | 116  |     | 3.3        | 87.3 |     |
| BaP                     | 1.5 | 14.4 | 160  | 43.8 | 28.6       | 11.3 | 150          | 3.2 | 8.7  | 1.5 |      |      |      | 26.1 | 5.2        | 1631       | 9.1  | 1.5  | 4.8        |     | 163  | 179  | 1259 | 572  | 8.9  | 43.2 | 48.2 | 49.5 | 1.9 | 3.9        | 110  | 2.8 |
| Pery                    | 1.8 | 8.2  | 27.4 | 49.1 | 17.4       | 5.7  | 73.6         |     | 3.6  |     | 1.9  | 9.0  | 4.8  | 11.8 | 5.0        | 154        | 3.8  |      |            |     | 28.4 | 34.4 | 151  | 89.1 | 2.8  | 83.6 | 46.6 | 15.6 |     |            | 29.6 |     |
| IcdP                    | 2.7 | 21.8 | 148  | 46.4 | 35.4       | 11.5 | 177          | 5.0 | 11.8 |     |      |      |      | 34.9 |            | 2124       | 18.1 | 3.7  | 7.1        | 1.9 | 253. | 254  | 2382 | 1203 | 16.3 | 79.2 | 83.5 | 84.1 | 3.4 | 5.3        | 216  | 3.5 |
| DbahA                   | 3.2 | 12.5 | 68.4 | 25.0 | 21.7       | 8.1  | 77.6         | 5.1 | 6.6  | 2.3 | 12.2 | 8.2  | 8.7  | 18.2 | 4.8        | 1333       | 22.6 | 8.7  | 10.6       | 3.6 | 116  | 133  | 923  | 619  | 12.0 | 38.4 | 35.0 | 33.2 | 2.5 | 3.8        | 98.7 |     |
| BghiP                   |     | 16.7 | 105  | 31.7 | 26.8       | 7.6  | 136          | 2.7 | 6.0  |     | 10.4 | 10.6 | 12.5 | 25.7 | 5.0        | 1307       | 10.1 |      | 4.0        |     | 177  | 140  | 1333 | 693  | 7.7  | 50.0 | 55.2 | 55.2 | 2.2 | 3.7        | 143  | 4.5 |

<sup>&</sup>lt;sup>a</sup> Shaded concentrations indicate values that exceeded ISQG (orange) and PEL (red).

Table S5. (Continued)

| Toward DAIL   | _     |      |      |      | TIC  | T17 | D71 | D72 | D72 | D74 | D75 | D76 | DV1 | DVA  | DW2 | DVA | DVE  | WEI  | WES | WES  | XXII:4 | WEE | WEC  | WE  | WEO  | VT1 | VTO  | VTO | N/T/ |
|---------------|-------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|------|------|-----|------|--------|-----|------|-----|------|-----|------|-----|------|
| Target PAHs   |       |      | TJ4  |      |      |     | BZ1 |     |     | BZ4 |     |     |     |      |     |     |      |      |     |      |        | WF5 |      |     |      |     |      | YT3 |      |
| Na            |       |      | 10.2 |      | 10.6 |     | 6.1 | 6.1 | 6.8 | 9.1 | 8.6 | 7.5 |     | 11.0 |     | 6.7 |      | 10.2 |     |      |        | 8.6 | 9.7  |     | 12.9 |     | 11.2 |     | 8.3  |
| 2-Na          |       |      | 5.3  | 3.6  | 6.8  | 2.5 | 2.2 | 2.5 | 1.8 | 3.8 | 4.1 | 1.9 |     | 2.1  | 1.3 | 3.9 |      | 3.8  | 3.3 | 3.5  | 1.8    | 2.1 | 4.9  | 2.5 | 2.4  | 2.9 | 4.2  | 2.3 | 2.4  |
| 1-Na          |       | 1.3  | 1.4  |      | 2.0  |     |     |     |     |     |     |     | 1.9 |      |     |     | 7.3  |      |     |      |        |     | 1.7  |     |      |     | 1.4  |     |      |
| 1,3-Na        | 1.8   |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     | 7.0  |      |     |      |        |     |      |     |      |     |      |     |      |
| 1,4,5-Na      |       |      | 1.5  |      | 1.7  |     |     |     |     |     |     |     |     |      |     |     | 7.4  |      |     |      |        |     |      |     |      |     |      |     |      |
| 1,2,5,6-Na    |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     | 4.3  |      |     |      |        |     |      |     |      |     |      |     |      |
| Acl           |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     | 4.1  |      |     |      |        |     |      |     |      |     |      |     |      |
| Ace           |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     | 5.6  |      |     |      |        |     |      |     |      |     |      |     |      |
| Flu           | 3.3   | 1.8  | 1.7  | 1.9  | 3.1  |     |     |     |     |     |     |     | 1.9 |      |     |     | 6.4  |      |     |      |        |     | 2.3  |     |      |     |      |     |      |
| 9-Flu         |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     |      |      |     |      |        |     |      |     |      |     |      |     |      |
| 1-Flu         | 2.6   |      | 2.2  | 1.7  | 2.4  |     |     |     |     |     |     |     | 3.3 |      |     |     | 58.9 | 1.6  |     | 1.6  |        |     | 3.6  |     |      |     | 1.7  |     | 1.8  |
| 1,7-Flu       |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     | 5.6  |      |     |      |        |     |      |     |      |     |      |     |      |
| 9-n-Propyl-Fl |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     |      |      |     |      |        |     |      |     |      |     |      |     |      |
| Dbthio        |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     | 2.4  |      |     |      |        |     |      |     |      |     |      |     |      |
| 2-Dbthio      |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     | 2.5  |      |     |      |        |     |      |     |      |     |      |     |      |
| 2,4-Dbthio    |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     | 1.4  |      |     |      |        |     |      |     |      |     |      |     |      |
| 2,4,7-Dbthio  |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     |      |      |     |      |        |     |      |     |      |     |      |     |      |
| Phe           | 12.3  | 6.1  | 6.1  | 5.8  | 18.5 | 2.5 | 2.1 | 2.1 | 2.0 | 3.9 | 2.8 | 1.3 | 4.8 | 1.4  |     | 3.1 | 81.7 | 3.6  | 2.3 | 3.6  | 1.7    |     | 9.5  | 2.0 | 2.2  | 2.1 | 8.9  | 1.2 | 1.2  |
| 3-Phe         | 4.8   | 2.1  | 4.0  | 2.8  | 6.7  | 1.0 | 0.8 | 0.7 | 0.6 | 1.2 | 0.9 | 0.3 | 2.9 | 0.3  |     | 1.0 | 36.5 | 1.2  | 0.6 | 2.4  | 0.5    |     | 2.8  | 0.5 | 0.7  | 0.5 | 2.4  |     |      |
| 2-phe         | 4.0   | 1.8  | 2.8  | 1.8  | 4.8  | 0.8 | 0.7 |     |     | 1.3 | 0.9 |     | 2.2 |      |     | 1.2 | 42.2 | 1.0  |     | 2.0  |        |     | 2.4  |     |      |     | 2.5  |     |      |
| 1,6-Phe       | 6.3   | 3.2  | 4.7  | 2.6  | 5.0  | 1.0 | 2.0 | 1.1 | 1.0 | 2.2 | 1.0 |     | 2.0 |      |     | 1.4 | 52.7 | 1.1  |     | 2.9  |        |     | 2.4  |     | 0.8  |     | 2.8  |     |      |
| 1,2-Phe       |       |      | 0.9  |      | 1.0  |     |     |     |     |     |     |     |     |      |     |     | 5.0  |      |     |      |        |     |      |     |      |     |      |     |      |
| 1,2,9-Phe     |       |      |      |      |      |     |     |     |     |     |     |     |     |      |     |     |      |      |     |      |        |     |      |     |      |     |      |     |      |
| 1,2,6,9-Phe   |       |      | 0.9  |      |      |     |     |     |     |     |     |     |     |      |     |     | 3.3  |      |     |      |        |     |      |     |      |     |      |     |      |
| Ant           | 3.0   | 1.0  | 1.4  | 1.6  | 3.2  | 0.4 |     |     |     | 0.7 |     |     | 0.8 |      |     |     | 21.9 | 0.8  |     | 0.6  |        |     | 4.4  |     |      |     | 1.5  |     |      |
| Fl            | 18.4  | 9.3  | 9.9  | 11.3 | 46.0 | 4.2 | 2.8 | 2.5 | 2.0 | 3.1 | 1.9 |     | 5.3 |      |     | 2.5 | 116  | 3.7  | 2.4 | 3.3  | 2.0    |     | 15.3 | 1.9 | 1.0  | 1.4 | 30.8 |     |      |
| Py            | 16.3  | 10.3 | 12.3 | 10.3 | 36.3 | 3.8 | 2.8 | 2.0 | 1.9 | 2.5 | 2.0 |     | 3.1 |      |     | 2.6 | 157  | 2.4  | 1.2 | 3.7  | 1.0    |     | 9.0  |     | 1.7  |     | 20.3 |     |      |
| BaA           | 8.8   | 4.2  | 5.1  | 4.7  | 15.0 | 1.5 | 1.3 | 0.8 | 0.6 | 1.1 | 0.7 |     | 1.7 |      |     | 1.0 | 125  | 1.2  |     | 7.2  |        |     | 5.3  |     |      |     | 15.9 |     |      |
| Chr           | 12.0  | 6.7  | 7.1  | 7.0  | 22.9 | 2.8 | 2.1 | 1.5 | 1.2 | 2.1 | 1.4 |     | 3.6 |      |     | 1.9 | 149  | 2.7  | 1.3 | 24.8 | 1.1    |     | 8.7  |     |      |     | 23.9 |     |      |
| 3-Chr         | 4.0   | 3.1  | 6.1  | 3.1  | 7.5  | 1.1 | 1.2 | 0.7 | 0.6 | 1.4 | 0.5 |     | 1.8 |      |     | 0.9 | 97.8 | 3.8  | 0.8 | 44.1 | 0.5    |     | 3.7  |     |      |     | 10.5 |     |      |
| 6-Ethyl-Chr   |       | 0.7  | 1.9  | 0.9  | 1.7  |     |     |     |     |     |     |     |     |      |     |     | 6.6  | 0.5  |     | 2.6  |        |     | 0.7  |     |      |     | 0.9  |     |      |
| 1,3,6-Chr     |       |      | 0.9  |      |      |     |     |     |     |     |     |     |     |      |     |     | 1.1  |      |     |      |        |     |      |     |      |     |      |     |      |
| BbF           | 16.8  | 8.0  | 8.5  | 8.4  | 29.1 | 3.4 | 3.2 | 1.7 |     | 2.2 |     |     | 3.6 |      |     | 2.0 | 156  | 2.2  |     | 9.5  |        |     | 10.3 |     |      |     | 36.4 |     |      |
| BkF           | 5.2   | 2.7  | 2.5  | 2.7  | 9.1  |     |     |     |     |     |     |     |     |      |     |     | 59.8 |      |     | 3.7  |        |     | 3.9  |     |      |     | 16.9 |     |      |
| BaP           | 7.3   | 3.3  | 3.5  | 3.3  | 10.4 |     |     |     |     |     |     |     |     |      |     |     | 146  |      |     | 5.6  |        |     | 5.0  |     |      |     | 17.3 |     |      |
| Pery          | 5.3   |      | 2.3  | 2.6  | 2.4  |     |     |     |     |     |     |     |     |      |     |     | 18.9 |      |     |      |        |     |      |     |      |     | 4.0  |     |      |
| IcdP          | 9.5   | 4.5  | 4.3  | 4.1  | 14.3 |     | 2.0 |     |     |     |     |     |     |      |     |     | 133  |      |     | 2.4  |        |     | 4.9  |     |      |     | 27.0 |     |      |
| DbahA         | 1.8   |      |      |      | 2.9  |     |     |     |     |     |     |     |     |      |     |     | 35.1 |      |     | 4.7  |        |     |      |     |      |     | 3.3  |     |      |
| BghiP         |       | 5.4  | 5.9  | 4.9  | 15.0 |     | 2.3 |     |     |     |     |     | 1.9 |      |     | 2.2 |      |      |     | 7.2  |        |     | 5.6  |     |      |     | 29.3 |     |      |
|               | - 5.5 |      | /    |      | -2.0 |     |     |     |     |     |     |     | /   |      |     |     |      |      |     |      |        |     |      |     |      |     |      |     |      |

<sup>&</sup>lt;sup>a</sup> Shaded concentrations indicate values that exceeded ISQG (orange) and PEL (red).

Table S6. Concentrations of APs and SOs in sediments of the Yellow and Bohai seas.

|            |       |              |              | APs   |               | and 5        |              |      |      |      |              | SOs  |      |      |       |      |
|------------|-------|--------------|--------------|-------|---------------|--------------|--------------|------|------|------|--------------|------|------|------|-------|------|
| Sites      | OP OP | OP1F0        | O OP2EC      |       | NP1F(         | NP2EO        | SD1          | SD2  | SD3  | SD4  | SD5          | SD6  | SD7  | SD8  | SD9   | SD10 |
| LS1        | 1.28  | 0.97         | 18.17        | 7.44  | 4.23          | 11.90        | 1.33         | 302  | 1.95 | 0.30 | 4.32         | 300  | 0.47 | 0.58 | 307   | 3D10 |
| LS2        | 1.42  | 0.78         | 16.67        | 7.69  | 4.42          | 1.86         | 1.26         |      | 1.98 | 0.80 | 4.74         | 0.63 | 1.04 | 0.72 | 0.47  |      |
| LS4        | 0.13  | 0.33         | 6.67         |       | 1.87          | 4.19         | 1.20         |      | 1.31 |      | 3.52         |      |      | **** |       |      |
| DB         | 0.27  | 0.18         | 5.78         |       | 9.50          | 4.78         | 1.02         |      | 1.04 |      | 2.79         |      | 0.36 |      |       |      |
| AS1        |       | 0.18         | 1.76         |       | 1.26          |              | 0.89         |      | 1.72 |      | 3.83         |      | 0.76 |      |       |      |
| AS2        | 0.12  | 0.23         | 5.69         | 5.21  | 2.11          | 4.22         | 2.20         | 2.20 | 5.88 | 2.68 | 11.64        | 4.45 | 2.35 | 1.46 | 0.85  |      |
| SG1        | 0.13  | 0.14         | 2.28         |       | 1.13          |              | 1.28         |      | 1.19 |      | 4.22         |      |      |      |       |      |
| SG2        | 0.28  | 0.27         | 6.93         |       | 2.25          | 4.58         | 1.46         |      | 1.32 | 0.44 | 3.90         |      | 0.52 |      |       |      |
| SD         | 0.91  | 0.27         | 2.82         |       | 1.17          | 1.82         | 1.06         |      | 1.32 | 0.33 | 3.23         |      | 0.93 | 1.31 |       |      |
| ML         | 0.95  | 0.21         | 2.82         |       | 1.33          |              | 1.10         |      | 1.27 |      | 2.97         |      | 0.34 |      |       |      |
| AM         |       | 0.25         | 2.75         |       | 1.43          |              | 1.03         |      | 1.15 |      | 2.78         |      | 0.41 |      |       |      |
| CS1        | 0.88  | 0.20         | 1.64         |       | 1.58          |              | 0.84         |      |      |      | 1.87         |      | 0.31 |      |       |      |
| CS2        | 0.13  | 0.27         | 3.16         |       | 2.93          | 2.73         | 0.89         |      | 1.09 |      | 3.12         |      | 0.49 |      |       |      |
| GG1        | 2.33  | 0.68         | 3.65         | 65.24 | 13.25         | 7.22         | 1.18         |      | 1.09 | 0.37 | 4.10         |      | 0.45 |      |       |      |
| GG2        | 0.29  | 0.34         | 1.14         | 4.49  | 3.42          | 6.12         | 1.00         |      | 1.21 |      | 3.42         |      | 0.86 | 0.68 | 0.43  |      |
| GS         | 0.99  | 0.36         | 3.72         |       | 4.68          | 4.43         | 1.13         |      | 1.19 |      | 3.32         |      | 0.36 |      |       |      |
| HP         | 0.12  | 0.30         | 3.45         |       | 2.98          | 2.75         | 1.07         |      | 1.15 |      | 3.00         |      |      |      |       |      |
| JD         |       | 0.26         | 2.39         |       | 2.29          | 1.94         | 1.04         |      | 1.16 |      | 2.97         | 4.76 | 9.85 | 3.19 | 2.95  |      |
| YS1        | 0.17  | 0.39         | 6.88         |       | 2.87          | 4.57         | 1.29         |      | 1.19 |      | 3.81         | 6.04 | 5.72 | 2.13 | 1.84  |      |
| YS2        | 0.16  | 0.39         | 4.19         |       | 2.83          | 2.26         | 2.69         | 0.67 | 4.24 | 0.76 | 5.35         | 0.53 | 0.66 | 1.55 | 0.38  |      |
| DD1        |       | 0.29         | 0.25         | 1.33  | 4.46          | 3.20         |              |      | 2.39 | 1.06 |              | 1.29 | 2.29 | 0.79 | 0.85  |      |
| DD2        | 0.17  | 0.35         | 0.31         | 4.38  | 4.31          | 3.23         |              | 1.74 | 2.75 | 1.11 | 1.82         | 2.10 | 1.53 | 2.68 | 0.81  |      |
| DD3        | 0.26  | 0.39         | 0.47         | 3.73  | 6.16          | 11.79        |              | 0.79 |      | 0.91 | 0.67         |      | 0.38 |      |       |      |
| DD4        |       | 0.26         | 0.31         |       | 1.98          |              |              |      |      | 0.87 |              |      |      |      |       |      |
| DL3        | 0.17  | 0.35         | 0.26         | 4.38  | 3.29          | 1.89         |              |      |      | 0.76 |              |      | 0.37 | 0.50 |       |      |
| DL5        |       | 0.30         | 0.28         |       | 4.44          | 1.97         |              |      |      | 0.69 |              |      |      |      |       |      |
| YT5        | 0.13  | 0.42         | 3.16         |       | 4.12          | 4.75         | 1.33         |      |      |      | 2.95         |      |      | 0.51 |       |      |
| YT6        | 0.93  | 0.32         | 3.78         | 3.60  | 4.72          | 5.68         | 1.35         |      | 1.02 |      | 4.39         | 1.01 | 0.72 | 1.45 | 0.32  |      |
| WH1        | 0.58  | 0.62         | 1.14         | 19.93 | 21.19         | 22.57        | 1.38         |      | 1.46 | 0.39 | 4.49         | 1.04 | 1.03 | 1.32 | 0.56  |      |
| WH2        |       | 0.35         | 3.25         |       | 2.83          | 3.22         | 1.25         |      | 1.20 |      | 3.01         |      |      |      |       |      |
| WH3        | 0.30  | 0.46         | 2.20         |       | 4.27          | 4.35         | 1.89         |      | 2.60 | 0.48 | 10.15        | 2.99 | 3.49 | 0.95 | 1.74  |      |
| QD1        | 1.24  | 1.64         | 1.49         | 6.99  | 17.97         | 14.31        |              |      | 4.79 | 1.51 | 1.53         | 2.60 | 2.25 | 4.19 | 1.06  |      |
| QD2        |       | 0.26         | 0.58         |       | 1.57          |              |              |      | 2.20 | 1.00 |              |      |      |      |       |      |
| QD3        | 0.96  | 0.30         | 0.35         | 5.44  | 1.49          |              | 0.35         |      | 2.44 | 1.36 | 6.33         | 1.33 | 1.36 | 1.14 | 0.54  |      |
| QD4        | 0.20  | 0.21         | 0.30         | 4.36  | 1.36          | 4.40         | 0.02         |      | 2.51 | 1.00 | 2.21         | 0.53 | 0.45 | 0.83 |       |      |
| QD5        | 0.20  | 0.55         | 2.90         | 3.72  | 4.25          | 4.49         | 0.93         |      | 1.21 | 0.22 | 2.31         | 0.67 | 0.45 | 0.56 | 0.72  | 2.44 |
| QD6        | 0.60  | 0.46         | 12.70        | 6.65  | 7.44          | 17.40        | 1.12         |      | 1.31 | 0.33 | 4.47         | 0.67 | 1.57 | 0.56 | 0.73  | 3.44 |
| QD7        | 0.15  | 0.52         | 7.60         | 4 77  | 11.48         | 22.55        | 1.01         |      | 1.03 |      | 2.83         |      | 0.35 |      |       |      |
| RZ1        | 0.12  | 0.49         | 3.62         | 4.77  | 4.77          | 5.19         | 1.13         |      |      |      | 2.97         |      | 0.40 |      |       |      |
| RZ2<br>LY1 | 0.12  | 0.39<br>0.28 | 3.84<br>2.14 | 4.61  | 16.18<br>3.19 | 7.27<br>2.77 | 1.07<br>1.16 |      | 1.04 | 0.35 | 3.24<br>2.70 |      | 0.36 |      |       |      |
| LY2        |       | 0.28         | 3.90         |       | 3.67          | 3.78         | 1.49         |      | 1.41 | 0.33 | 3.77         |      | 0.47 | 0.51 |       |      |
| LY3        | 0.47  | 0.41         | 5.80         | 4.97  | 5.97          | 7.28         | 1.14         |      | 1.41 | 0.47 | 2.59         |      | 0.47 | 0.51 |       |      |
| LY4        | 0.47  | 0.47         | 0.53         | 4.77  | 3.91          | 7.20         | 1.27         |      | 1.33 | 0.42 | 2.65         |      |      |      |       |      |
| YC1        |       | 0.45         | 2.83         |       | 4.46          | 2.32         | 1.19         |      | 1.33 | 0.42 | 2.66         |      |      |      |       |      |
| YC2        |       | 0.40         | 2.15         |       | 3.89          | 2.57         | 1.90         |      | 2.27 | 0.75 | 6.74         | 1.65 | 2.16 | 2.26 | 0.71  |      |
| YC3        | 0.22  | 0.46         | 5.49         | 6.73  | 6.85          | 5.93         | 2.24         | 1.29 | 1.85 | 0.73 | 7.24         | 1.71 | 1.71 | 6.78 | 2.51  |      |
| YC4        | 0.22  | 0.58         | 1.92         | 0.73  | 5.26          | 7.42         | 2.27         | 1.27 | 1.59 | 0.40 | 5.39         | 1./1 | 0.94 | 0.70 | 0.44  |      |
| YC5        | 0.83  | 0.34         | 2.86         |       | 3.27          | 2.42         | 1.58         |      | 1.57 | 0.70 | 3.22         |      | 0.74 |      | U. 17 |      |
| YC6        | 0.82  | 0.92         | 8.83         | 19.50 | 11.46         | 2.17         | 4.43         | 1.20 | 7.52 | 0.75 | 7.45         | 6.13 | 1.22 | 3.79 | 0.61  | 1.16 |
| YC7        | 0.02  | 0.55         | 4.64         | 17.50 | 4.63          | 3.82         | 1.57         | 1.20 | 1.01 | 0.75 | 3.50         | 0.13 | 1.22 | 5.17 | 0.01  | 1.10 |
| YC8        | 0.88  | 0.29         | 2.38         |       | 2.62          | 2.48         | 1.56         |      | 1.01 |      | 2.90         |      |      |      |       |      |
| NT1        | 0.44  | 0.52         | 5.80         | 6.58  | 4.83          | 6.48         | 2.18         | 1.02 | 1.65 | 0.41 | 7.00         |      | 1.07 | 0.59 |       |      |
| NT2        | 0.21  | 0.54         | 5.86         | 3.62  | 6.82          | 5.12         | 1.60         |      | 1.14 | 0.29 | 3.66         |      | 0.59 |      |       |      |
| NT3        | 0.19  | 0.49         | 4.72         | 4.69  | 6.74          | 3.35         | 2.07         |      | 2.26 | -    | 4.04         | 0.55 | 0.33 |      |       |      |

Table S6. (Continued)

| Table      | 50.          | Conti        | nuea)         |              |                |                |               |              |               |              |              |              |               |              |              |      |
|------------|--------------|--------------|---------------|--------------|----------------|----------------|---------------|--------------|---------------|--------------|--------------|--------------|---------------|--------------|--------------|------|
| Sites      |              |              |               | Ps           |                |                |               |              |               |              |              | SOs          |               |              |              |      |
|            | OP           |              | OP2EO         | NP           |                | NP2EO          |               | SD2          | SD3           | SD4          | ST1          | ST2          | ST3           | ST4          | ST5          | ST6  |
| NT4        |              | 0.26         | 2.55          |              | 1.87           | 2.58           | 2.21          |              | 1.30          |              | 4.10         |              |               |              |              |      |
| NT5        | 0.14         | 0.55         | 5.43          |              | 4.44           | 4.82           | 2.08          | 1.06         | 1.40          | 0.46         | 4.75         |              | 0.25          | 1.47         | 0.36         |      |
| NT6        |              | 0.38         | 2.22          |              | 3.60           | 2.33           | 1.94          | 1 10         | 1.50          | 0.24         | 4.39         |              | 0.36          |              | 0.24         |      |
| NT7        | 0.16         | 0.28         | 2.76          |              | 2.23           | 2.29           | 2.18          | 1.43         | 1.36          | 0.34         | 5.30         |              | 0.32          | 1.15         | 0.34         |      |
| NT8<br>NT9 | 0.16<br>0.98 | 0.62         | 4.65          | 5 12         | 8.35           | 3.62           | 2.14          | 1.02         | 1.43          | 0.32<br>0.91 | 5.77<br>6.75 | 2 96         | 0.31          | 1.34<br>7.23 | 0.44<br>0.51 |      |
| NT10       | 0.98         | 1.79<br>0.60 | 39.25<br>8.81 | 5.13<br>7.68 | 7.57<br>14.80  | 12.16<br>25.25 | 3.01<br>15.57 | 1.92<br>1.97 | 3.44<br>17.22 | 1.97         | 92.22        | 2.86<br>7.19 | 2.14<br>14.17 | 4.35         | 4.87         | 4.13 |
| DL1        | 0.49         | 0.33         | 0.36          | 7.06         | 1.53           | 23.23          | 13.37         | 1.97         | 17.22         | 1.17         | 1.34         | 1.99         | 2.77          | 2.42         | 0.96         | 1.26 |
| DL1<br>DL2 | 0.10         | 0.26         | 0.26          |              | 1.48           |                |               |              |               | 0.88         | 1.54         | 1.           | 2.11          | 2.42         | 0.50         | 1.20 |
| DL4        | 0.17         | 0.35         | 0.26          | 4.38         | 3.29           | 1.89           |               |              |               | 0.76         |              |              | 0.37          | 0.50         |              |      |
| DL6        |              | 0.30         | 0.28          |              | 4.44           | 1.97           |               |              |               | 0.69         |              |              |               |              |              |      |
| YK1        | 0.12         | 0.29         | 0.20          | 6.46         | 2.86           | 1.78           |               |              |               | 0.83         |              | 1.49         | 1.62          | 4.51         | 3.47         |      |
| YK2        |              | 0.35         | 0.25          |              | 2.43           |                |               |              |               | 0.83         |              | 0.54         | 0.53          | 0.80         |              |      |
| YK3        |              | 0.23         | 0.22          |              | 1.53           |                |               |              |               | 0.75         |              | 0.67         | 0.72          | 0.83         | 0.35         |      |
| PJ1        | 0.36         | 0.33         | 0.33          | 14.46        | 7.00           | 4.93           |               |              | 1.47          | 0.75         | 0.60         | 0.92         | 1.02          | 2.34         | 0.44         |      |
| PJ2        | 0.14         | 0.40         | 0.18          | 4.56         | 3.53           |                |               |              | 1.31          | 0.52         |              |              | 1.05          | 2.92         | 1.28         |      |
| JZ1        |              | 0.31         | 0.26          |              | 1.63           |                |               |              |               | 0.66         |              |              | 0.52          | 0.82         |              |      |
| JZ2        |              | 0.22         | 0.27          |              | 1.52           |                |               |              |               | 0.76         |              |              | 0.47          | 0.71         |              |      |
| JZ3        |              | 0.24         | 0.22          |              | 1.51           |                | 0.41          |              |               | 0.69         | 1.03         |              | 0.36          |              |              |      |
| JZ4        |              | 0.28         | 0.27          |              | 2.72           |                |               |              |               | 1.14         | 0.57         | 2.76         | 4.13          | 2.01         | 1.76         |      |
| JZ5        |              | 0.30         | 0.22          |              | 2.23           | 2.49           |               | 1.01         |               | 0.65         |              |              | 0.55          | 0.67         | 0.32         |      |
| HL1        |              | 0.36         | 0.52          |              | 2.93           |                |               | 1 10         | 1.07          | 0.65         |              | 0.00         | 0.61          | 0.95         | 0.40         |      |
| HL2        |              | 0.36         | 0.52          |              | 2.93           |                |               | 1.12         | 1.27          | 0.85         |              | 0.89         | 0.90          | 1.06         | 0.40         |      |
| HL3<br>HL4 | 1.97         | 0.15<br>2.44 | 0.17<br>6.12  | 12.90        | 1.69<br>281.79 | 19 56          |               | 2.51         | 6.83          | 0.86<br>9.55 | 3.45         | 43.37        | 0.47<br>88.14 | 28.58        | 33.13        | 2.57 |
| HL5        | 1.97         | 0.25         | 0.12          | 12.90        | 1.75           | 2.62           |               | 2.31         | 1.15          | 0.90         | 3.43         | 43.37        | 0.50          | 0.63         | 33.13        | 2.37 |
| HL6        |              | 0.27         | 0.44          |              | 2.11           | 2.02           |               |              | 1.48          | 1.13         |              |              | 0.38          | 0.59         | 0.38         |      |
| QH1        |              | 0.21         | 0.16          |              | 1.26           |                |               |              | 4.79          | 1.51         | 1.53         | 2.60         | 2.25          | 4.19         | 1.06         |      |
| QH2        | 0.18         | 0.27         | 0.17          |              | 1.80           |                |               |              | 1.01          | 0.73         |              |              |               | ,            |              |      |
| QH3        | 0.61         | 1.94         | 0.60          | 111.15       |                | 7.74           |               | 1.05         | 4.75          | 1.35         | 1.73         | 2.53         | 2.47          | 4.83         | 1.58         | 1.71 |
| QH4        | 0.34         | 0.42         | 0.47          | 38.24        | 32.35          | 6.58           |               |              | 4.44          | 1.18         | 1.39         | 0.89         | 0.95          | 1.63         | 0.55         |      |
| QH5        |              | 0.26         | 0.36          |              | 2.16           |                | 1.69          |              | 12.48         | 1.25         | 4.62         | 1.27         | 1.79          | 4.94         | 1.53         |      |
| QH6        | 0.62         | 0.67         | 0.89          | 31.49        | 16.78          | 7.18           | 1.89          | 0.79         | 18.14         | 1.53         | 5.77         | 7.36         | 3.12          | 57.88        | 2.09         | 2.26 |
| QH7        | 0.41         | 0.76         | 1.00          | 7.35         | 21.78          | 3.11           |               |              | 1.84          | 0.90         |              | 1.78         | 0.35          | 3.64         |              | 2.26 |
| TS1        |              | 0.28         | 0.30          |              | 1.73           | 3.74           |               |              | 3.04          | 0.81         | 0.82         |              | 0.65          | 0.70         | 0.51         |      |
| TS2        |              | 0.13         | 0.15          |              | 0.75           |                |               |              | 3.15          | 0.90         |              |              | 0.42          |              |              |      |
| TS3        |              | 0.33         | 0.34          |              | 6.44           | 1.99           |               |              | 2.25          | 0.72         |              | 1.83         | 0.45          | 3.28         |              |      |
| TS5        |              | 0.26         | 0.19          |              | 2.78           | 2.02           |               |              | 1.53          | 0.74         | 0.62         |              | 0.46          | 0.52         |              |      |
| TS6        | 0.24         | 0.46         | 0.50          | 11 10        | 6.13           | 2.92           |               |              | 2.74          | 0.93         | 2.56         | 2.20         | 0.46          | 0.53         | 1.60         | 2.22 |
| TS7<br>TJ1 | 0.24         | 0.53         | 0.90          | 11.18        | 8.14<br>0.76   | 6.40           | 1 46          |              | 11.23         | 1.65         | 2.56         | 3.20         | 4.33          | 2.72         | 1.60<br>0.35 | 3.22 |
| TJ2        | 0.84         | 0.11<br>0.31 | 0.92<br>5.26  | 3.77         | 4.72           | 4.99           | 1.46<br>1.58  |              | 1.81<br>1.81  | 0.62<br>0.60 | 3.86<br>3.86 | 0.65         | 0.93<br>0.46  | 0.82<br>0.59 | 0.55         |      |
| TJ3        | 0.64         | 0.31         | 3.17          | 3.11         | 2.56           | 3.66           | 1.54          | 1.82         | 2.30          | 3.37         | 4.52         | 4.46         | 5.93          | 2.69         | 2.03         |      |
| TJ4        | 0.82         | 0.33         | 4.42          |              | 3.97           | 5.25           | 1.73          | 1.02         | 3.15          | 0.66         | 4.85         | 0.68         | 1.26          | 1.00         | 0.53         |      |
| TJ5        | 0.02         | 0.25         | 3.25          |              | 2.93           | 3.37           | 1.41          |              | 1.40          | 0.64         | 4.04         | 0.99         | 1.33          | 2.25         | 0.53         |      |
| TJ6        |              | 0.32         | 5.76          | 5.59         | 5.74           | 4.91           | 1.72          |              | 4.48          | 0.56         | 10.73        | 0.,,         | 0.49          | 2.20         | 0.00         |      |
| TJ7        |              | 0.36         | 3.78          |              | 2.59           | 4.26           | 1.55          |              | 1.23          | 0.35         | 4.04         |              | 0.44          |              |              |      |
| BZ1        |              | 0.27         | 4.30          |              | 2.80           | 5.94           | 1.21          |              | 1.86          | 0.46         | 4.55         | 0.90         | 2.10          | 0.90         | 0.84         |      |
| BZ2        | 0.78         | 0.42         | 5.15          |              | 8.73           | 6.00           | 1.20          |              | 1.21          | 0.34         | 3.25         | 0.54         | 1.34          |              | 0.53         |      |
| BZ3        |              | 0.43         | 5.94          |              | 5.12           | 6.14           | 1.53          |              | 1.51          | 0.65         | 3.46         | 0.68         | 1.35          | 0.73         | 0.53         |      |
| BZ4        | 0.29         | 1.20         | 5.39          | 5.49         | 8.66           | 6.63           | 1.42          |              | 1.50          | 0.90         | 3.56         |              | 1.00          | 0.73         | 0.42         |      |
| BZ5        |              | 0.44         | 4.49          |              | 2.49           | 3.54           | 1.10          |              | 1.34          | 0.48         | 2.26         | 0.59         | 1.60          | 0.51         | 0.54         |      |
| BZ6        |              | 0.29         | 2.42          |              | 1.73           | 2.47           | 1.15          |              |               | 0.38         | 2.85         | 0.77         | 1.61          | 0.82         | 0.62         |      |
| DY1        | 0.11         | 0.26         | 3.32          |              | 2.74           | 4.77           | 1.42          |              | 1.07          | 0.35         | 19.53        | 1.23         | 2.73          | 1.21         | 0.87         |      |
| DY2        | 0.16         | 0.71         | 4.35          |              | 5.56           | 6.46           | 1.44          |              | 0.95          | 0.45         | 2.68         | 1.43         | 3.29          | 1.37         | 1.12         |      |

Table S6. (Continued)

| Sites |      |       | Α       | Ps    |       |       |      |      |       |      | S    | Os   |      |      |      |      |
|-------|------|-------|---------|-------|-------|-------|------|------|-------|------|------|------|------|------|------|------|
| Sites | OP   | OP1E0 | O OP2EO | NP    | NP1EO | NP2EO | SD1  | SD2  | SD3   | SD4  | SD5  | SD6  | SD7  | SD8  | SD9  | SD10 |
| DY3   |      | 0.27  | 3.34    |       | 2.34  | 4.48  | 1.14 |      |       | 0.35 | 2.56 |      | 0.81 |      |      |      |
| DY4   |      | 0.45  | 3.59    |       | 3.47  | 4.65  | 1.56 |      | 1.01  | 0.40 | 4.08 | 4.50 | 7.73 | 3.36 | 2.74 |      |
| DY5   | 0.17 | 0.39  | 11.93   | 6.22  | 18.42 | 2.46  | 2.41 |      | 23.32 | 0.67 | 6.06 | 1.68 | 2.80 | 6.48 | 1.15 | 1.48 |
| WF1   | 0.14 | 0.44  | 3.96    | 4.50  | 4.39  | 5.96  | 1.36 |      |       | 0.34 | 3.76 |      | 0.53 |      |      |      |
| WF2   | 0.97 | 0.36  | 3.42    | 4.69  | 3.58  | 4.24  | 1.69 |      | 1.18  |      | 8.23 | 0.94 | 1.66 | 0.59 | 0.64 | 4.54 |
| WF3   | 0.19 | 0.36  | 4.63    | 12.17 | 1.36  | 8.42  | 1.95 |      | 0.99  | 0.33 | 5.06 | 2.03 | 4.56 | 9.54 | 1.75 | 1.14 |
| WF4   | 0.14 | 0.26  | 4.80    |       | 3.11  | 4.86  | 1.31 |      |       | 0.29 | 3.02 | 1.22 | 2.84 | 1.14 | 0.96 |      |
| WF5   |      | 0.38  | 2.53    |       | 3.59  | 4.89  | 1.34 |      |       |      | 2.68 | 0.94 | 2.19 | 0.89 | 0.70 |      |
| WF6   | 0.22 | 0.43  | 4.90    | 8.57  | 8.25  | 8.76  | 1.54 |      | 1.57  |      | 3.72 | 1.39 | 2.79 | 1.12 | 0.93 |      |
| WF7   | 0.11 | 0.42  | 3.27    | 4.40  | 4.60  | 4.67  | 1.06 |      |       | 0.30 | 2.30 | 1.26 | 2.70 | 1.21 | 0.92 |      |
| WF8   | 0.86 | 0.27  | 2.85    |       | 3.50  | 4.99  | 2.52 |      | 1.59  | 0.79 | 9.41 | 3.50 | 1.55 | 0.60 | 0.67 |      |
| YT1   |      | 0.30  | 2.83    |       | 2.58  | 3.25  | 1.50 |      | 1.00  | 0.33 | 4.09 | 0.78 | 1.52 | 1.03 | 0.51 |      |
| YT2   | 0.13 | 0.29  | 5.77    | 4.99  | 5.15  | 9.39  | 1.93 | 3.60 | 5.25  | 3.33 | 6.93 | 0.73 | 0.49 | 0.86 | 0.32 |      |
| YT3   |      | 0.39  | 2.18    | 4.33  | 3.87  | 3.49  | 1.60 |      |       |      | 4.02 |      |      |      |      |      |
| YT4   | 0.77 | 0.37  | 2.37    | 3.64  | 3.96  | 3.70  | 1.49 |      | 1.02  |      | 2.86 | 1.35 | 3.86 | 3.40 | 2.81 |      |

**Table S7.** Fractional condition to identified sources (%) from base run using positive matrix factorization receptor model.

|                                         | Flu | Phe | Ant | Fl | Py | BaA | Chr | BbF | BkF | BaP | IcdP | DbahA | BghiP |
|-----------------------------------------|-----|-----|-----|----|----|-----|-----|-----|-----|-----|------|-------|-------|
| Factor 1 – diesel & gasoline combustion | 7   | 32  | 46  | 40 | 40 | 59  | 60  | 68  | 65  | 66  | 66   | 55    | 65    |
| Factor 2 – biomass combustion           | 34  | 41  | 23  | 46 | 46 | 25  | 21  | 16  | 17  | 16  | 2    | 0     | 17    |
| Factor 3 – coke oven                    | 43  | 27  | 16  | 6  | 7  | 5   | 9   | 0   | 3   | 2   | 9    | 45    | 2     |
| Factor 4 – others                       | 16  | 0   | 16  | 7  | 7  | 11  | 10  | 16  | 16  | 16  | 12   | 0     | 16    |

**Table S8.** Statistical relationships of landuse type on persistent toxic substances (PTSs), for all PTS categories and by region. The bold text highlights statistically significant relationships.

| Soo        |         | DTC  | Kruskal-W | allis test |       |         | Post hoc M | ann-Whitney | (P values) <sup>a</sup> |            |         |
|------------|---------|------|-----------|------------|-------|---------|------------|-------------|-------------------------|------------|---------|
| Sea        | Country | PTSs | F-value   | P value    | I-A   | I-B     | I-Ba       | M-A         | M-B                     | M-S        | M-Ba    |
| All        | All     | PAHs | 54.3      | < 0.001    | 0.001 | < 0.001 | <0.001     | <0.001      | < 0.001                 | 0.616      | < 0.001 |
|            |         | APs  | 10.9      | 0.146      |       |         |            |             |                         |            |         |
|            |         | SOs  | 16.2      | 0.015      | 0.196 | 0.251   | 0.554      | 1.000       | 1.000                   | 1.000      | 1.000   |
| Yellow Sea | Korea   | PAHs | 1.44      | 0.676      |       |         |            |             |                         |            |         |
|            |         | APs  | 5.80      | 0.128      |       |         |            |             |                         |            |         |
|            |         | SOs  | 4.27      | 0.227      |       |         |            |             |                         |            |         |
|            | China   | PAHs | 26.9      | < 0.001    | 0.324 | 0.023   | 0.002      | 0.346       | 0.025                   | <b>_</b> b | 0.002   |
|            |         | APs  | 10.5      | 0.061      |       |         |            |             |                         |            |         |
|            |         | SOs  | 11.0      | 0.052      |       |         |            |             |                         |            |         |
| Bohai Sea  | China   | PAHs | 36.4      | < 0.001    | 0.030 | 0.010   | 0.001      | 0.005       | 0.025                   | 0.023      | < 0.001 |
|            |         | APs  | 1.22      | 0.934      |       |         |            |             |                         |            |         |
|            |         | SOs  | 5.82      | 0.571      |       |         |            |             |                         |            |         |

<sup>&</sup>lt;sup>a</sup> I-Industrial; M-Municipal; A-Agricultural; B-Beach; Ba-Barren; S-Saltern

<sup>&</sup>lt;sup>b</sup> Post-hoc test not conducted.

**Table S9.** Statistical relationships of regional differences, by land use type. The bold text highlights statistically significant relationships.

| I andreas town      | DTC. | Kruskal-V | Vallis test | Post hoc                             | Mann-Whitney (          | P values)  |
|---------------------|------|-----------|-------------|--------------------------------------|-------------------------|------------|
| Landuse type        | PTSs | F-value   | P value     | Y-K <sup>a</sup> vs Y-C <sup>b</sup> | Y-K vs B-C <sup>c</sup> | Y-S vs B-C |
| Industrial          | PAHs | 7.52      | 0.023       | 0.029                                | 0.035                   | 1.000      |
|                     | APs  | 3.46      | 0.178       |                                      |                         |            |
|                     | SOs  | 4.06      | 0.132       |                                      |                         |            |
| Municipal           | PAHs | 5.40      | 0.067       |                                      |                         |            |
|                     | APs  | 0.67      | 0.714       |                                      |                         |            |
|                     | SOs  | 2.03      | 0.363       |                                      |                         |            |
| Agricultural        | PAHs | 4.70      | 0.095       |                                      |                         |            |
|                     | APs  | 0.34      | 0.842       |                                      |                         |            |
|                     | SOs  | 0.13      | 0.937       |                                      |                         |            |
| Beach               | PAHs | 0.43      | 0.805       |                                      |                         |            |
|                     | APs  | 6.06      | 0.048       | 0.048                                | 0.295                   | 1.000      |
|                     | SOs  | 0.16      | 0.924       |                                      |                         |            |
| Barren <sup>d</sup> | PAHs |           |             |                                      |                         | 0.545      |
|                     | APs  |           |             |                                      |                         | 0.880      |
|                     | SOs  |           |             |                                      |                         | 0.390      |

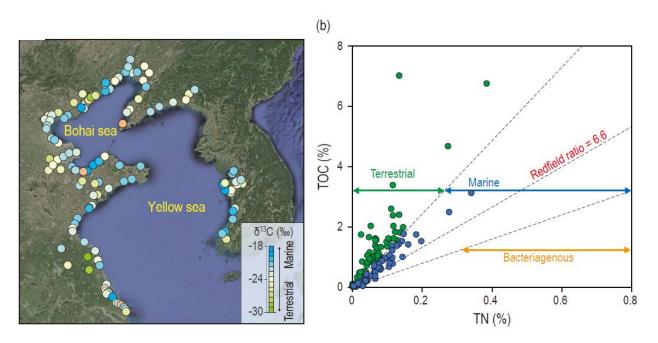
<sup>&</sup>lt;sup>a</sup> Y-K: Yellow Sea-Korea

<sup>&</sup>lt;sup>b</sup> Y-C: Yellow Sea-China

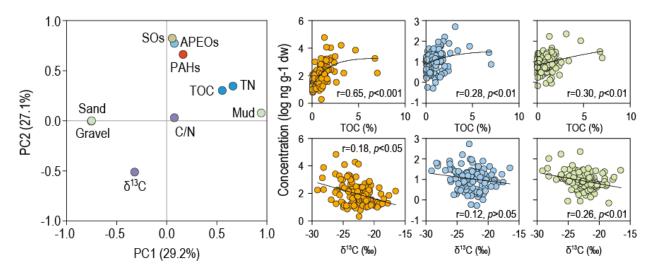
<sup>&</sup>lt;sup>c</sup> B-C: Bohai Sea-China

 $<sup>^{\</sup>rm d}$  n=2 (Yellow Sea-China and Bohai Sea-China)

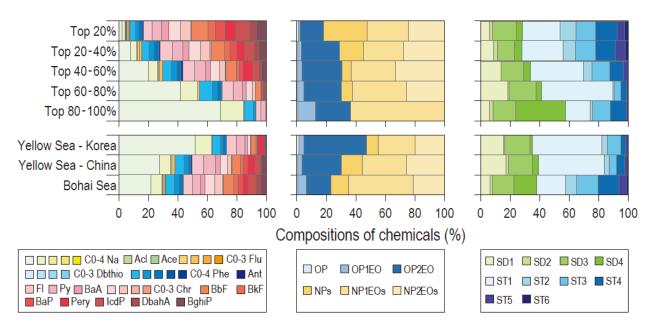
**Table S10.** Statistical relationships (Spearman rank) of regional differences between PTSs and physicochemical parameters in sediments, by land use type and region for the Yellow and Bohai seas. Bold text highlights statistically significant relationships.


| PTSs | Physicochemical | Ye         | llow Sea-Kor | ea     |            |           | Yellow Sea-C | China  |       |        |            |           | Bohai Sea-C  | China   |         |        |
|------|-----------------|------------|--------------|--------|------------|-----------|--------------|--------|-------|--------|------------|-----------|--------------|---------|---------|--------|
| PISS | parameters      | Industrial | Agricultural | Beach  | Industrial | Municipal | Agricultural | Beach  | Aquaª | Barren | Industrial | Municipal | Agricultural | Beach   | Saltern | Barren |
| PAHs | Mud content     | 0.50       | 0.69*        | 0.00   | -0.20      | 0.31      | 0.21         | 1.00** | 0.54  | 0.18   | 0.25       | 0.09      | 0.39         | 0.87    | -0.32   | -0.14  |
|      | TN              | 1.00**     | 0.69*        | 0.00   | -0.15      | 0.17      | 0.90**       | 0.87   | 0.60  | 0.20   | -0.58      | 0.64*     | 0.82**       | 0.87    | 0.95    | 0.13   |
|      | TOC             | 1.00**     | 0.87**       | -0.50  | -0.03      | 0.37      | 0.79*        | 1.00** | 0.43  | 0.33   | 0.48       | 0.42      | 0.68**       | -0.50   | 0.95    | 0.22   |
|      | C/N             | 1.00**     | -0.16        | 0.00   | 0.54       | 0.37      | 0.43         | -0.50  | -0.14 | 0.37   | -0.29      | -0.20     | 0.30         | -0.50   | 0.32    | 0.32   |
|      | $\delta^{13}$ C | 0.50       | -0.18        | -0.50  | 0.31       | 0.60      | 0.75         | -0.50  | -0.43 | 0.12   | 0.21       | 0.54      | -0.07        | -0.50   | 0.32    | 0.22   |
|      |                 |            |              |        |            |           |              |        |       |        |            |           |              |         |         |        |
| APs  | Mud content     | 1.00**     | 0.59*        | 1.00** | 0.14       | 0.31      | -0.18        | 0.50   | 0.43  | 0.44   | -0.12      | -0.03     | -0.01        | -1.00** | -0.40   | 0.56*  |
|      | TN              | 0.50       | 0.80**       | 1.00** | 0.03       | 0.23      | -0.02        | 1.00   | 0.49  | 0.42   | 0.20       | 0.60*     | 0.20         | -1.00** | 1.00**  | 0.53   |
|      | TOC             | 0.50       | 0.76**       | 0.87   | 0.09       | 0.03      | -0.29        | 0.67   | 0.66  | 0.15   | 0.16       | 0.65*     | 0.19         | 0.01    | 1.00**  | 0.61*  |
|      | C/N             | 0.50       | -0.01        | 1.00** | 0.43       | 0.03      | -0.57        | 0.67   | 0.26  | 0.22   | -0.49      | 0.04      | 0.08         | 0.01    | 0.20    | 0.10   |
|      | $\delta^{13}$ C | 1.00**     | -0.28        | 0.87   | 0.09       | 0.54      | 0.46         | 0.67   | -0.14 | 0.29   | -0.15      | 0.40      | 0.01         | 0.87    | 0.40    | -0.16  |
|      |                 |            |              |        |            |           |              |        |       |        |            |           |              |         |         |        |
| SOs  | Mud content     | 0.50       | 0.53         | 0.87   | -0.03      | 0.26      | 0.14         | 1.00** | 0.78  | -0.09  | -0.14      | -0.38     | 0.13         | -0.87   | -0.20   | 0.56*  |
|      | TN              | 1.00**     | 0.27         | 0.87   | -0.27      | 0.15      | 0.40         | 0.87   | 0.78  | -0.15  | 0.01       | 0.22      | 0.14         | -0.87   | 0.80    | 0.27   |
|      | TOC             | 1.00**     | 0.12         | 0.50   | -0.66      | 0.09      | 0.21         | 1.00** | 0.78  | -0.31  | 0.25       | 0.19      | 0.16         | -0.50   | 0.80    | 0.14   |
|      | C/N             | 1.00**     | -0.01        | -0.87  | 0.14       | 0.09      | -0.14        | -0.50  | 0.27  | -0.05  | -0.21      | -0.22     | 0.06         | -0.50   | 0.40    | -0.08  |
|      | $\delta^{13}$ C | 0.50       | 0.09         | 0.50   | 0.37       | 0.37      | 0.68         | -0.50  | -0.68 | -0.41  | -0.13      | 0.53      | 0.59**       | 1.00**  | 0.20    | 0.26   |

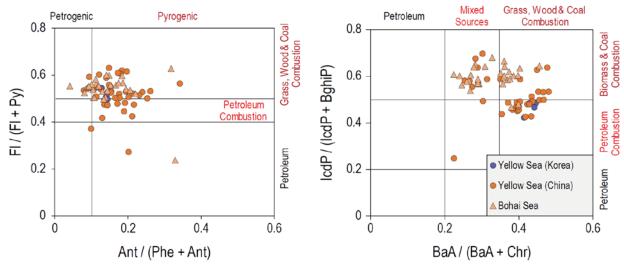
<sup>&</sup>lt;sup>a</sup> Aqua: Aquaculture


<sup>\*</sup> Significantly correlated at p < 0.05 level (2-tailed).

<sup>\*\*</sup> Significantly correlated at p < 0.01 level (2-tailed).


# **Supplementary Figures**




**Fig. S1.** (a) Spatial distribution of  $\delta^{13}$ C values and (b) C/N ratios in the sediment of Yellow and Bohai seas.



**Fig. S2.** Relationships among PTSs. Panels: (left) Principal Component Analysis (PCA) ordination of PTSs and physicochemical parameters and (right) the relationship between PTSs and TOC or  $\delta^{13}$ C.



**Fig. S3.** Composition of PTSs among concentration groups, by concentration (20% interval of concentrations) and region.



**Fig. S4.** Diagnostic ratios for prediction of PAHs sources between Ant/(Ant+Phe) and Fl/(Fl+Py), and BaA/(BaA+Chr) and IcdP/(IcdP+BghiP).

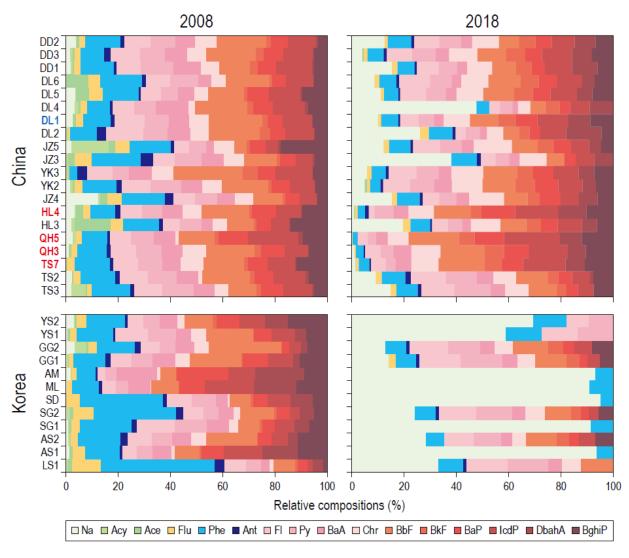



Fig. S5. Compositions of 16 PAHs in 2008 and 2018 in sediments of the Yellow and Bohai seas.