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1. EFFECT-DIRECTED ANALYSIS COMBINED WITH
NONTARGET SCREENING

Effect-directed analysis (EDA) is a valuable method for
identifying major toxicants in environmental samples.'™> It
enables the detection of toxic substances in samples with
complex matrixes, as “finding a needle in a haystack.” ™ The
principle of EDA is to reduce sample complexity by fractionating
samples that exhibit significant toxicity.' > Subsequently,
bioassays and chemical analyses are conducted repeatedly to
identify the major toxic substances in highly potent fractions.*°
This process is challenging, but the results have far-reaching
implications for the identification of toxic substances that have
not been monitored previously.*"® Target chemicals are often
called the “tip of the iceberg” because they account for only a
small portion of the observed biological effects, indicating that
unmonitored toxic substances may be present in environmental
samples. In recent years, the identification of novel toxic
substances has been enabled due to the development of high-
resolution mass spectrometry (HRMS).” Nontarget screening
(NTS) aims to detect and identify all substances present in a
sample and can be usefully applied in EDA to identify causative
toxic substances in highly potent fractions.””” The combined
use of EDA and NTS addresses the limitations of performing
only NTS, which lacks information on the potential toxicity of
compounds in environmental samples.*~*'’"'> EDA combined
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with NTS has been applied successfully for the identification of
unmonitored toxicants in sediment, wastewater, biota, etc.”' '3
This approach will help to expand the scope of analysis to
include unknown substances, moving away from emstln%
methods that rely solely on target chemical monitoring.'""'

Furthermore, it is expected to facilitate the efficient incorpo-
ration of effect-based momtorlng (EBM) into environmental
monitoring programs.'®'” The purpose of this paper is to
describe the current status and limitations of EDA combined
with NTS, with case studies of its successful application. In
addition, we provide suggestions for the integration of EDA into
future environmental monitoring programs and management
policies.

2. METHODOLOGY OF EDA COMBINED WITH NTS:

LIMITATIONS AND CHALLENGES

2.1. Step 1. Identification of Highly Potent Fractions.
The first step in EDA is the collection and preparation of
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Procedure of Effect-Directed Analysis Combined with Non-Target Screening
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Figure 1. Schematic diagram of the effect-directed analysis combined with nontarget screening procedure. In Step 1, the raw organic extract is screened
for toxicity using in vivo or in vitro bioassays. Fractionation is performed one or more times for samples with great toxicity. Fractions are subjected to
bioassays to identify highly potent fractions. In Step 2, target and nontarget analyses are performed, and toxicant candidates for induced toxicity are
derived. In Step 3, candidate substances are chemically and toxicologically confirmed. Contributions of existing and newly identified toxic substances to
induced toxicity are calculated using potency balance analysis. Finally, the major toxicants in the environmental samples are identified.

Bioassay-derived BEQs (BEQvio) vs. Instrument-derived BEQs (BEQchem)

-

o

w
B

L

Case 1.

BEQehem = Z Ci x RePi

BEQbio < BEQchem

10°

BEQunknown = BEQbio — BEQchem

)

() =1 : mixture toxic effects 2
= 2. ae] - 5 2

g_ 10 § BEQuvio = ECreference - ’\Q ) O ” 10 Fully

P 7 ECsample - 7 Case 2. L o expk\alned by

o 1 BEQbio ~ BEQchem Q3 e
£ 103 e 8. ] :responses fully explained O é 10 Ae

g 3 v ‘ by known substances E n 2

s 4 . - S c =
g 1.04 o 7 Case 3. 8 1.0 > | Contributions
L /Case3’ BEQbio > BEQchem o0 o

toxic substances

T T T T T T T T T T

0.1 1.0 10 100 10°
BEQoio in samples

©
N

: presence of unmonitored

0.1
Case2 Case3d

Samples

Case 1

Figure 2. Principle of potency balance analysis to determine the toxicity contributions of individual compounds. The toxicity contribution is calculated
by comparing the total induced toxicity in the sample [bioassay-derived bioanalytical equivalent (BEQy,,)] and the toxicity of known toxic substances
[instrument-derived bioanalytical equivalent (BEQ,}1,)]. When the BEQ,,.,,, exceeds the BEQy;, (Case 1), a mixture toxic effect is suspected. When
the BEQy,, and BEQ,,, are similar (Case 2), the known substances account for most of the toxicity. When the BEQ,,..,, is much lower than the BEQy;,
(Case 3), the sample contains unknown toxic substances (RePs, relative potency values; EC, effective concentration).

environmental samples (Figure 1). For liquids, such as river
water and wastewater, composite samples are typically used to
ensure representativeness. Alternatively, passive samplers, such
as the polar organic chemical integrative sampler or a
semipermeable membrane device, could be employed.'® EDA
focuses primarily on organic toxic substances; organic extracts
are produced using liquid—liquid or solid-phase extraction.'”*’
During this process, the adverse effects of components and
factors, such as metals, inorganic ions, salt, and pH, are
disregarded. This limitation can be addressed by combining
EDA with toxicity identification evaluation.”"**

For solid samples (e.g.,, sediment, soil, and biota), organic
extracts are typically obtained using Soxhlet extraction,
accelerated solvent extraction, ultrasonic extraction, etc.”*
These methods may not fully consider the bioaccessibility and/
or bioavailability of organic chemicals in environmental samples.
To compensate for this limitation, bioaccessibility-based
extraction methods (partial or selective extraction), such as
TENAX, have been developed and applied to EDA.>**~*° Gel
permeation chromatography column cleanup is effective in
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removing interfering substances, such as lipids, from samples
(e.g., biota or highly polluted sediments).

Various in vitro and in vivo bioassays can be employed in EDA
(Table S1). The group of compounds in samples that react may
vary depending on the bioassay method selected.'” When a raw
extract exhibits a significant response, fractionation testing is
conducted to identify major toxic fractions. Chemical
fractionation is the separation of various substances in the raw
organic extract based on their physicochemical properties (e.g.,
polarity, molecular mass, log Kow, etc.) using column
chromatography.'™"* This process aims to reduce the
complexity of the sample, enabling the identification of potential
toxicants through instrumental analysis. If the sample complex-
ity is still high after fractionation, multistep fractionation can be
considered.' =397 However, as more fractionations are
performed, compounds in the sample might be lost; thus, it is
crucial to determine the appropriate fractionation process.

The isolation of toxic fractions is often more evident in in vitro
bioassays that rely on the specific modes of action related to the
chemical structures,”’ as compared to in vivo bioassays which
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evaluate lethal or sublethal effects on orgemisms.28 However, in
the case of highly toxic substances, like N-(1,3-dimethylbutyl)-
N'-phenyl-p-phenylenediamine (6PPD)-quinone found in tire
leachate, toxic fractions could be clearly isolated even in in vivo
bioassays.”” Occasionally, the toxic potency is greater following
fractionation than in the parent fraction, possibly due to the
complex interactions, such as mixture effects and/or removal of
compounds causing masking effects.'”'**>*" Stringent quality
control is necessary during bioassays; fractions should be
recombined, and their toxicity is compared to that of the parent
fraction. In addition, certain chemicals may simultaneously
activate multiple pathways in test organisms in a nonspecific
manner. As a result, toxic effects that are more pronounced than
those of previously identified mechanisms are often observed.*”
As EDA is performed with organic extracts, efforts should be
made to minimize the influence of solvents.'” Of note, the
toxicity of hydrophobic compounds may be underestimated due
to their (1) low solubility in water, (2) tendency to adsorb to
plastic well plates, and (3) effects on partitioning, especially in
lipid-rich sample matrixes.'””* Thus, it is important to design
bioassays, including appropriate dosing techniques and the use
of laboratory tools.

2.2, Step 2. Selection of Toxicant Candidates. The
selection of target and suspect analytes in EDA focuses on
compound groups that align with the toxicity endpoint. Their
concentrations in fractions are quantified, and potency balance
analysis is performed by comparing the observed toxicity using
the concentrations and relative potency values (RePs) of the
target compounds (Figure 2).** When the known compounds
do not sufficiently explain the observed toxicity, NTS can be
applied to expand the range of substances of interest.”> ™’
During NTS, optimization of the instrumental conditions of
HRMS is crucial, as the proficiency of the user can significantly
impact the outcomes.”® The data processing of N'TS is also a
critical step in identifying toxicant candidates.”” Despite the
complexity reduction achieved through fractionation, hundreds
of compounds are often detected in the fractions.”” If additional
suitable fractionations are available, they can be employed to
further reduce complexity. Otherwise, the detected compounds
should be filtered using specific criteria based on the bioassay
endpoints to derive potential toxicants.'”'® For example, in a
study to identify unknown aryl hydrocarbon receptor (AhR)
active substances in environmental samples, the criteria for
selecting candidate compounds were the presence and number
of aromatic rings.*”

Next, candidate compounds can be selected by matching with
mass spectral libraries. When the components of a compound
cannot form a combination structure or the fragment ions do not
match the spectrum of the library, these compounds could be
excluded from the list of candidates.*”*' Mass libraries for
product-derived substances, including pharmaceuticals and
pesticides, are relatively well developed; those for byproducts
and transformation products (TPs) are less comprehensive.*” If
there is no match in the mass spectral library, the unknown
substances could be identified through further identification
techniques, such as in silico fragmentation tools (e.g,, MetFrag
and MetFusion).*”** Toxicant candidates are selected based on
the results of target analysis and NTS, typically on the scale of a
few dozen compounds. Recent advancements have led to the
proposal of more systematic prioritization through machine
learning, artificial neural network analysis, or in silico
modeling. "’

2.3. Step 3. Identification of Major Toxicants. In Step 3,
chemical and toxicological confirmation is carried out on the
toxicant candidates (Figure 2). However, this step can be
performed only on compounds for which standard materials are
available. Such materials are frequently unavailable'"" or
cannot be purchased due to their high cost or export/import
restrictions.*® In such instances, in silico modeling and toxicity
prediction databases can be utilized to predict the toxicological
potencies of chemicals, providing insights into their toxicity
mechanism, effective concentration (EC), and inhibitory
concentration.’ Chemical confirmation involves the comparison
of retention times of compounds on gas chromatography (GC)
or liquid chromatography (LC) using standard materials and the
examination of the masses of fragment ions utilizing Full MS/
ddMS2%*'" When these analyses confirm that the substance
matches the compound detected in the sample, quantitative
analysis is performed. Toxicological confirmation is conducted
with bioassays using diluted standards. The ReP value is
calculated by comparing the EC (e.g, EC,, or ECy) of the
newly identified toxicant with the reference compound.” It
enables the conversion of the bioassay response to an equivalent
concentration.**

Potency balance analysis, also referred to as “iceberg
modeling,” involves the quantitative comparison of the
bioanalytical equivalent concentration in the highly potent
fraction derived from bioassays (BEQ,,) with the instrument-
derived bioanalytical equivalent (BEQuyer)- "7 This compar-
ison assumes that the effects of toxic substances are additive.*®
Mixture toxic effects are suspected when the BEQ., is
significantly greater than the BEQ;, (Figure 2, Case 1).%1°
When the BEQ.., and BEQ, are similar, the analyzed
compounds account for most of the responses (Figure 2, Case
2).""* For most environmental samples, the BEQ_ .y, is much
smaller than the BEQ;, (Figure 2, Case 3), indicating the
presence of unknown toxic substances.”** When the newly
identified toxic substances explain a significant portion of the
induced toxicity, EDA combined with NTS can be considered
successful; when these compounds do not substantially increase
the explanatory power, the major toxic substance has not been
identified. This limitation can be attributed to several factors,
including the lack of mass spectral libraries, unavailability of
standard materials, and selection criteria constraints.*®%°
Through potency balance analysis, the toxicity contributions
of individual compounds can be calculated, and the substance
with the greatest contribution can be considered the major toxic
substance.

3. APPLICATIONS OF EDA COMBINED WITH NTS:
CASE STUDIES

3.1. Sediments. Sediments are commonly used in environ-
mental pollution monitoring because they accumulate organic
pollutants over a long period (Table $2)."**" Using the H4IIE-
luc bioassay, Kim et al.” identified major AhR-active compounds
in coastal sediments near industrial complexes in Ulsan Bay,
Korea. AhR-mediated potencies were found mainly in fractions
of aromatics with log Koy values of 5—7. Through GC—
quadrupole time-of-flight mass spectrometry (QTOFMS), the
researchers identified seven novel AhR-active substances that
accounted for up to 16% of the induced AhR-mediated potency.
In another study, Cha et al.* identified polar AhR agonists in
sediments from Lake Sihwa, Korea. Eight polar AhR agonists
that explained an average of 5.9% of the total AhR-mediated
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Application of EDA combined with NTS to Environmental Monitoring and Management
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Figure 3. Applicability of EDA to environmental monitoring and management. In Phase 1, environmental contamination by toxic substances is
diagnosed and evaluated through target chemical and effect-based monitoring. When the concentrations of target substances exceed environmental
quality guidelines (EQGs) or the bioassay results exceed effect-based triggers (EBTs), the potential risk exists. When the target concentrations are
below EQGs, and the bioassay results are below EBTs, the situation is considered safe. In Phase 2, a potency balance analysis is performed to determine
the explanatory power of known toxic substances and identify chemicals of emerging concern (CECs). When known toxicants do not adequately
account for the overall toxicity, EDA should be performed to identify unmonitored toxicants. In Phase 3, the sources of CECs are identified, and

environmental policies are established for CECs reduction and management.

potency were identified. These polar AhR agonists were
associated primarily with pharmaceuticals and pesticides.

3.2. Wastewater Treatment Plant Effluents. Wastewater
treatment plant (WWTP) effluent is a major point source of
toxic substances in aquatic environments, and the identification
of unmonitored toxicants is crucial.”'"*> Mijangos et al.”
identified toxic substances in WWTP effluents that caused
growth inhibition and skeletal malformation in sea urchin
embryos. For fractions showing high toxicity, NTS was
performed with the use of LC—HRMS. Six toxic substances
affecting sea urchin embryogenesis, including pesticides,
antidepressants, and anthelmintic agents, were newly identified.
In an artificial mixture test, these substances were found to
account for 79% of the total observed toxicity. Gwak et al.''
identified two unmonitored estrogen receptor (ER) agonists in
sewage treatment plant effluents using T47D-kbluc bioassays
and LC—QTOFMS analysis. These novel ER agonists explained
only 4% of the total ER-mediated potency, indicating that
unknown ER agonists may still be present in the samples.

3.3. Biota. Toxic substances can accumulate in wild animals
and humans through bioaccumulation and biomagnifica-
tion.>>™>> In some cases, top predators can accumulate
exceptionally high levels of toxic substances.”> The application
of EDA to biological samples has been employed in polar
bears, seabirds,'® cetaceans,”® and humans.’” Simon et al.'®
identified thyroid hormone-disrupting compounds in polar bear
blood plasma samples (Svalbard, Norway). They conducted
NTS with LC—TOFMS and identified branched nonylphenols
and mono- and dihydroxylated-octachlorinated biphenyls as
major toxicants, explaining 32% of the total measured
transthyretin-binding potencies in the extracts. To date,
relatively fewer EDA studies have been conducted on biota
samples than on other environmental samples.”* This is due to
various interfering substances, including endogenous com-
pounds and metabolites, present in biological samples,">**
making it difficult for fractionations, bioassays, and instrumental
analyses."”

3.4, Others and Future EDA Application. In addition to
the cases mentioned above, EDA has been applied successfully
to oil and oil-contaminated sediments,*® microplastics,59 indoor
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household dust,”® river water,”’ and atmospheric fine particles
(Table $2).°" Furthermore, its potential applicability to road
dust and household chemical products is being recognized. In
addition to the applicability of EDA to these marine—
terrestrial—atmospheric environments, EDA needs to be
performed more to identify unknown toxic substances
accumulated in human and human-related samples. EDA can
be employed for the identification of not only artificial chemicals
but also natural biotoxins. As for all sample types, proper sample
collection and preparation with the consideration of exposure
scenarios, use of appropriate bioassays and endpoints, and target
compound selection are important in the application of EDA
combined with NTS to such samples.

4. FUTURE PERSPECTIVES ON EDA COMBINED WITH
NTS

EDA combined with NTS can be applied in environmental
monitoring and management for ecosystem protection along
with existing target chemical monitoring and EBM. We propose
three phases (Phases 1—3) for the application (Figure 3).

4.1. Phase 1. Environmental Monitoring and Assess-
ment. Target chemical monitoring for organic pollutants in
aquatic environments is used widely in many countries as a
primary tool.'”** It is a straightforward and intuitive approach to
the designation and management of pollutants with concen-
trations exceeding environmental quality guidelines (EQGs) as
chemicals of emerging concern (CECs). However, there are
thousands of toxic substances in the environment, including
metabolites and TPs, while target chemical monitoring evaluates
only a small portion of them (about hundreds).**®
Furthermore, chemical analysis cannot account for the mixture
effects of chemicals in the environment. Even if individual
compounds are present below the EQGs and detection limits,
they can cause significant toxicity due to mixture effects.'” To
compensate for this limitation, EBM has recently been
proposed, and related elements are actively being devel-
oped. 1517

The establishment of effect-based trigger (EBT) values is
crucial for EBM application. Concentrations obtained with
different bioassays, which assess various toxicological endpoints,
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cannot be compared directly due to the use of different reference
compounds.'”'® Thus, endpoint-specific EBT values should be
determined, and the amounts to which they are exceeded in
various bioassays can be compared. When chemical analysis
yields results that do not exceed EQGs, but EBM reveals
potential toxicity through the exceeding of EBTs, further
evaluation of potential risks to the ecosystem is necessary
(Figure 3). A situation can be deemed “safe” when the results of
target chemical monitoring do not surpass EQGs, and there are
no potential toxicity endpoints exceeding EBTs, as indicated by
EBM. More ecologically relevant and practical EBT values are
necessary for an accurate evaluation of potential risks to the
ecosystem. Furthermore, considering the bioavailability of
chemicals when establishing EBT values can provide a more
refined perspective in assessing the potential risk of environ-
mental contamination and identifying CECs.

4.2. Phase 2. Risk Identification and Characterization.
Risk identification and characterization are conducted for
samples containing toxic substances whose concentrations
have been found to exceed EQGs by chemical analysis and
whose endpoints have been found to exceed EBTs by EBM.
‘When the target compounds account for a significant proportion
of the overall toxic response, the compounds with significant
toxicity contributions are recognized as CECs (Figure 3). When
the target compounds explain only a small proportion of the
overall induced toxicity, EDA combined with NTS is performed
to identify unmonitored toxic substances. Thus, toxic substances
identified through EBM and EDA are designated CECs. In some
cases, however, major toxic substances remain unidentified after
EDA is performed. In such instances, mixture toxicity testing or
further confirmation of the toxicity of compounds not confirmed
by NTS is recommended.”'* Furthermore, when parent
compounds are introduced into the aquatic environment,
exposure to environmental factors and chemical reactions can
lead to the formation of TPs.”” These TPs may still possess
toxicity or even exhibit increased toxicity due to photooxidation
and microbial activity.*>** Identifying these TPs is challenging
due to the lack of established methods for isolating and purifying
these products from the organic extracts. In addition, many such
products do not match mass library entries, and standard
materials are often unavailable.*” To address this issue, the
development of more extensive compound libraries and
standard materials, and methods of isolating and purifying TPs
from parent compounds, is necessary.

4.3. Phase 3. Environmental Management. In the
selection of CECs, the identification of the source and
contamination pathway is crucial. Effective CECs management
can be achieved only with the identification of the sources of
major toxic substances, which can be challenging when multiple
sources exist. Initially, the pollution source is estimated based on
the compound group concentration and composition and
statistical results.”'® Product-derived CECs are easier to manage
compared to byproducts and TPs;*> their introduction into
the environment can be reduced by banning their use when
alternatives exist. For CECs that are byproducts and TPs, the
process by which they were produced from the parent
compounds needs to be clarified. Studies of the multimedia
distribution of CECs in aquatic environments, accompanied by
the examination of their persistence, bioaccumulation, and
biomagnification, are needed.

5. IMPLICATIONS

The ultimate goal of EDA combined with NTS is to contribute
to the effective management of healthy ecosystems through the
identification of toxic substances that pose potential risks but are
not currently monitored. Over the past 20 years, many research
efforts have contributed to the advancement of EDA methods,
resulting in the accumulation of knowledge and expertise. To
further enhance the application of EDA and its integration into
environmental monitoring programs and policies, additional
research is needed to address the following current limitations.

1. Environmental relevance should be further considered
during the EDA process, including sampling, extraction,
and bioassays.

2. Active substances should be identified and listed based on
their toxicity, enabling the simultaneous application of
chemical monitoring and EBM.

3. The range of target substances should be expanded, and
EQGs should be developed for a broader array of
compounds.

4. Assay-specific EBTs should be developed to enable
comparison across bioassays.

S. The processing of NTS data should be systematized to
ensure comprehensive analysis.

As EDA involves the use of techniques from various research
fields, such as environmental analytical chemistry, environ-
mental toxicology, and environmental policy, multidisciplinary
collaboration among relevant researchers is essential. The future
application of EDA can be enhanced by addressing limitations
and fostering collaboration, leading to improved ecosystem
management and protection.
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